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ABSTRACT
This book presents the reader, whether an electrical engineering student in power electronics
or a design engineer, some typical power converter control problems and their basic digital
solutions, based on the most widespread digital control techniques. The presentation is focused
on different applications of the same power converter topology, the half-bridge voltage source
inverter, considered both in its single- and three-phase implementation. This is chosen as
the case study because, besides being simple and well known, it allows the discussion of a
significant spectrum of the more frequently encountered digital control applications in power
electronics, from digital pulse width modulation (DPWM) and space vector modulation (SVM),
to inverter output current and voltage control. The book aims to serve two purposes: to give
a basic, introductory knowledge of the digital control techniques applied to power converters,
and to raise the interest for discrete time control theory, stimulating new developments in its
application to switching power converters.

KEYWORDS
Digital control in power electronics, Discrete time control theory, Half-bridge voltage source
converters, Power converters, Power electronics
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C H A P T E R 1

Introduction: Digital Control
Application to Power Electronic

Circuits

Power electronics and discrete time system theory have been closely related to each other from
the very beginning. This statement may seem surprising at first, but, if one thinks of switch
mode power supplies as variable structure periodic systems, whose state is determined by logic
signals, the connection becomes immediately clearer. A proof of this may also be found in
the first, fundamental technical papers dealing with the analysis and modeling of pulse width
modulated power supplies or peak current mode controlled dc–dc converters: they often provide
a mathematical representation of both the switching converters and the related control circuits,
resembling or identical to that of sampled data dynamic systems.

This fundamental contiguousness of the two apparently far areas of engineering is probably
the strongest, more basic motivation for the considerable amount of research that, over the
years, has been dedicated to the application of digital control to power electronic circuits. From
the original, basic idea of implementing current or voltage controllers for switching converters
using digital signal processors or microcontrollers, which represents the foundation of all current
industrial applications, the research focus has moved to more sophisticated approaches, where
the design of custom integrated digital controllers is no longer presented like an academic
curiosity, but is rather perceived like a sound, viable solution for the next generation of high-
performance power supplies.

If we consider the acceleration in the scientific production related to these topics in the
more recent years, we can easily anticipate, for a not too far ahead future, the creation of
energy processing circuits, where power devices and control logic can be built on the same
semiconductor die. From this standpoint, the distance we see today between the tools and the
design methodology of power electronics engineers and those of analog and/or digital integrated
circuit designers can be expected to significantly reduce in the next few years.
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We have to admit that, in this complex scenario, the purpose of this book is very sim-
ple. We just would like to introduce the reader to basic control problems in power electronic
circuits and to illustrate the more classical, widely applied digital solutions to those problems.
We hope this will serve two purposes: first, to give a basic, introductory knowledge of the
digital control techniques applied to power converters, and second, to raise the interest for dis-
crete time control theory, hopefully stimulating new developments in its application to power
converters.

1.1 MODERN POWER ELECTRONICS
Classical power electronics may be considered, under several points of view, a mature discipline.
The technology and engineering of discrete component based switch mode power supplies
are nowadays fully developed industry application areas, where one does not expect to see
any outstanding innovation, at least in the near future. Symmetrically, at the present time,
the research fields concerning power converter topologies and the related conventional, analog
control strategies seem to have been thoroughly explored.

On the other hand, we can identify some very promising research fields where the future
of power electronics is likely to be found. For example, a considerable opportunity for innovation
can be expected in the field of large bandgap semiconductor devices, in particular if we consider
the semiconductor technologies based on silicon carbide, SiC, gallium arsenide, GaAs, and
gallium nitride, GaN. These could, in the near future, prove to be practically usable not only for
ultra-high-frequency amplification of radio signals, but also for power conversion, opening the
door to high-frequency (multi-MHz) and/or high-temperature power converter circuits and,
consequently, to a very significant leap in the achievable power densities.

The rush for higher and higher power densities motivates research also in other directions.
Among these, we would like to mention three that, in our vision, are going to play a very
significant role. The first is the integration in a single device of magnetic and capacitive passive
components, which may allow the implementation of minimum volume, quasi monolithic,
converters. The second is related to the analysis and mitigation of electromagnetic interference
(EMI), which is likely to become fundamental for the design of compact, high frequency,
converters, where critical autosusceptibility problems can be expected. The third one is the
development of technologies and design tools allowing the integration of control circuits and
power devices on the same semiconductor chip, according to the so-called smart power concept.
These research areas represent good examples of what, in our vision, can be considered modern
power electronics.

From this standpoint, the application of digital control techniques to switch mode power
supplies can play a very significant role. Indeed, the integration of complex control func-
tions, such as those that are likely to be required by the next generation power supplies,



INTRODUCTION: DIGITAL CONTROL APPLICATION 3

is a problem that can realistically be tackled only with the powerful tools of digital control
design.

1.2 WHY DIGITAL CONTROL
The application of digital control techniques to switch mode power supplies has always been
considered very interesting, mainly because of the several advantages a digital controller shows,
when compared to an analog one.

Surely, the most relevant one is the possibility it offers for implementing sophisticated
control laws, taking care of nonlinearities, parameter variations or construction tolerances by
means of self-analysis and autotuning strategies, very difficult or impossible to implement
analogically.

Another very important advantage is the flexibility inherent in any digital controller, which
allows the designer to modify the control strategy, or even to totally reprogram it, without the
need for significant hardware modifications. Also very important are the higher tolerance to
signal noise and the complete absence of ageing effects or thermal drifts.

In addition, we must consider that, nowadays, a large variety of electronic devices, from
home appliances to industrial instrumentation, require the presence of some form of man to
machine interface (MMI). Its implementation is almost impossible without having some kind
of embedded microprocessor. The utilization of the computational power, which thus becomes
available, also for lower level control tasks is almost unavoidable.

For these reasons, the application of digital controllers has been increasingly spreading
and has become the only effective solution for a whole lot of industrial power supply production
areas. To give an example, adjustable speed drives (ASDs) and uninterruptible power supplies
(UPSs) are nowadays fully controlled by digital means.

The increasing availability of low-cost, high-performance, microcontrollers and digital
signal processors stimulates the diffusion of digital controllers also in areas where the cost of
the control circuitry is a truly critical issue, like that of power supplies for portable equipment,
battery chargers, electronic welders and several others.

However, a significant increase of digital control applications in these very competing
markets is not likely to take place until new implementation methods, different from the tradi-
tional microcontroller or DSP unit application, prove their viability. From this standpoint, the
research efforts towards digital control applications need to be focused on the design of custom
integrated circuits, more than on algorithm design and implementation. Issues such as occupied
area minimization, scalability, power consumption minimization and limit cycle containment
play a key role. The power electronics engineer is, in this case, deeply involved in the solution
of digital integrated circuit design problems, a role that will be more and more common in the
future.
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1.3 TRENDS AND PERSPECTIVES
From the above discussion, it will be no surprise if we say that we consider the increasing
diffusion of digital control in power electronics virtually unstoppable. The advantages of the
digital control circuits, as we have briefly outlined in the previous section, are so evident that, in
the end, all the currently available analog integrated control solutions are going to be replaced
by new ones, embedding some form of digital signal processing core. Indeed, it is immediate to
recognize that the digital control features perfectly match the needs of present and, even more,
future, highly integrated, power converters. The point is only how long this process is going
to take. We can try to outline the future development of digital controllers distinguishing the
different application areas.

The medium-to high-power applications, such as electrical drives, test power supplies,
uninterruptible power supplies, renewable energy source interfaces, are likely to be developed
according to the same basic hardware organization for a long time to come. The application of
microcontroller units or digital signal processors in this area is likely to remain very intensive.
The evolution trend will probably be represented by the increasing integration of higher level
functions, e.g., those concerning communication protocols for local area networks or field buses,
man to machine interfaces, remote diagnostic capabilities, that currently require the adoption
of different signal processing units, with low-level control functions.

As far as the low power applications are concerned, as we mentioned in the previous
section, we cannot, at the moment, describe an established market for digital controllers. How-
ever, the application of digital control in this field is the object of an intensive research. In the
near future, new control solutions can be anticipated, which will replace analog controllers with
equivalent digital solutions, in a way that can be considered almost transparent to the user.
Successively, the complete integration of power and control circuitry is likely to determine a
radical change in the way low power converters are designed.

1.4 WHAT IS IN THIS BOOK
As mentioned above, in front of the complex and exciting perspectives for the application
of digital control to power converters, we decided to aim this book at giving the reader a
basic and introductory knowledge of some typical power converter control problems and their
digital solutions. Referring to the above discussion, we decided to dedicate the largest part
of our presentation to topics that can be considered the current state of the art for industrial
applications of digitally controlled power supplies.

The book is consequently proposed to power electronics students, or designers, who would
like to have an overview of the most widespread digital control techniques. It is not intended to
provide an exhaustive description of all the possible solutions for any considered problem, nor
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to describe the more recent research advances related to any of them. This choice has allowed
us to keep the presentation of the selected materials relatively agile and to give it an immediate,
practical usefulness.

Accordingly, what the reader should know to take full advantage of the contents that are
presented here is relatively little: a basic knowledge of some power electronic circuits (essentially
half-bridge and full-bridge voltage source inverters) and the fundamental mathematical tools
that are commonly employed in modeling continuous and discrete time dynamic system (Laplace
transform and Z transform, for starters) will perfectly do.

As the reader will realize, if he or she will have the patience to follow us, the book is
conceived to explain the different concepts essentially by means of examples. To limit the risk
of being confusing, proposing several different topologies, we decided to take into account a
single, relatively simple test case and develop its analysis all along the text. Doing so, the contents
we have included allowed us to present, organically and without too many context changes, a
significant amount of control techniques and related implementation details.

In summary, the book is organized as follows. Chapter 2 describes the considered test
case, a voltage source inverter, and the first control problem, i.e., the implementation of a
current control loop, discussing in the first place its analog, i.e., continuous time, solutions.
Chapter 3 is dedicated to digital control solutions for the same problem: in the beginning
we present a relatively simple one, i.e., the discretization of continuous time controllers. In
the following, other fully digital solutions, like those based on discrete time state feedback
and pole placement, are presented. Chapter 4 is dedicated to the extension to three phase
systems of the solutions presented for the single-phase inverter. In this chapter we discuss space
vector modulation (SVM) and rotating reference frame current controllers, like those based
on Park’s transformation. Finally, Chapter 5 presents the implementation of external control
loops, wrapped around the current controller, which is typically known as a multiloop controller
organization. The design of an output voltage controller, as is needed in uninterruptible power
supplies, is considered first. Both large bandwidth control strategies and narrow bandwidth
ones, based on the repetitive control concept, are analyzed. After that, and in conclusion, two
other significant examples of multiloop converter control, which we may find in controlled
rectifiers and active power filters, are considered and briefly discussed.
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C H A P T E R 2

The Test Case: a Single-Phase
Voltage Source Inverter

The aim of this chapter is to introduce the test case we will be dealing with in the following
sections. As mentioned in the introduction, it would be extremely difficult to describe the
numerous applications of digital control to switch mode power supplies, since this is currently
employed in very wide variety of cases. In order not to confuse the reader with a puzzle of
several different circuit topologies and related controllers, what we intend to do is to consider
just a single, simple application example, where the basics of the more commonly employed
digital control strategies can be effectively explained. Of course, the concepts we are going to
illustrate, referring to our test case, can find a successful application also to other converter
topologies.

The content of this chapter is made up, in the first place, by an introductory, but fairly
complete, description of the power converter we will be discussing throughout this book, i.e.,
the half-bridge voltage source inverter. Secondly, the principles of its more commonly adopted
low-level control strategy, namely pulse width modulation (PWM), will be explained, at first in
the continuous time domain, and then in the discrete time domain. The issues related to PWM
control modeling are fundamental for the correct formulation of a switch mode power supply
(SMPS) digital, or even analog, control problem, so this part of the chapter can be considered
essential to the understanding of everything that follows. The final part of the chapter is instead
dedicated to a summary of the more conventional analog control strategies, which will serve as
a reference for all the following developments.

2.1 THE VOLTAGE SOURCE INVERTER
The considered test case is shown in Fig. 2.1. As can be seen, the power converter we want to take
into consideration is a single-phase voltage source inverter (VSI). The VSI has a conventional
topological structure, which is known as a half bridge. We will now analyze the power converter’s
organization in some detail.
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FIGURE 2.1: Half-bridge voltage source inverter.

2.1.1 Fundamental Components
The ideal voltage sources VDC at the input are, in practice, approximately implemented by means
of suitably sized capacitors, fed by a primary energy source. They are normally large enough
to store a considerable amount of energy and their purpose is to deliver it to the load, rapidly
enough not to cause the circulation of substantial high-frequency currents through the primary
source. This, in turn, can be represented by any real dc voltage source, from batteries to line-fed
rectifiers, depending on the particular application. However, for our discussion, modeling the
energy source as an ideal voltage source does not represent any limitation.

The power switches are represented by the conventional IGBT symbol, but it is pos-
sible to find implementations with very different switch technologies, such as, for instance,
power MOSFETs or, for very high power application, thyristors. As can be seen, each switch
is paralleled to a free-wheeling diode, whose purpose is to make the switch bidirectional,
at least as far as the current flow is concerned. This interesting property makes the VSI
of Fig. 2.1 a four-quadrant converter, with the capability of both delivering and absorbing
power.

Again, in order to simplify the treatment of our control problems and without any loss of
generality, we will assume that the switch plus diode couple behaves like an ideal switch, i.e.,
one whose voltage is zero in the “on” state and whose current is zero in the “off ” state. Moreover,
we will assume that the change from the “on” state to the “off ” state and vice versa takes place
in a null amount of time.

In our simple example, the load will be described as the series connection of a resistor RS,
an inductor LS, and a voltage source ES, which can be either dc or ac. We will learn to control the
current across the load using several different strategies. It is worth mentioning that, with this
particular structure, the load model is capable of representing various different applications of
the VSI, including electrical drives, voltage-controlled current sources, and controlled rectifiers.
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The role and meaning of the different components, in particular of the voltage ES, will be
different in each case, but the structure will be exactly the same.

2.1.2 Required Additional Electronics: Driving and Sensing
Several components are needed to allow the proper operation of the VSI that were not described
in the previous section. First of all, the power switches need to be driven by a suitable control
circuit, allowing the controlled commutation of the device from the “on” to the “off ” state
and vice versa. Depending on the particular switch technology, the driving circuitry will have
different implementations. For example, in the case of MOSFET or IGBT switches the driving
action consists in the charging and discharging of the device input capacitance, which is, in fact,
a power consuming operation. To take care of that, suitable drivers must be adopted, whose
input is represented by the logic signals determining the desired state of the switch and output
is the power signal required to bring the switch into that state. A typical complication in the
operation of drivers is represented by the floating control terminals of the high-side switch (G1

and E1 in Fig. 2.1). Controlling the current between those terminals and, simultaneously, that
between the same terminals of the low-side switch (G2 and E2 in Fig. 2.1) requires the adoption
of isolated driving circuits or the generation of floating power supplies, e.g., based on bootstrap
capacitors.

We will not discuss further the operation of these circuits and simply assume that the logic
state of the control signal is instantaneously turned into a proper switch state. An exception to
this will be the discussion of dead-times, presented in the following. Of course, the interested
reader can find more details regarding state-of-the-art switch drivers in technical manuals or
datasheets, easily available on the world wide web, such as for example [1].

In addition to drivers, the controlled operation of the converter requires the measurements
of several electrical variables. Typically, the input voltage of the inverter circuit, VDC, its output
current, i.e., the current flowing through the load, IO, and, sometimes, the voltage ES are
measured and used in the control circuit. The acquisition of those signals requires suitable signal
conditioning circuits, analog in nature, that can range from simple resistive voltage dividers
and/or current shunts, possibly combined to passive filters, to more sophisticated solutions, for
example those employing operational amplifiers, to implement active filters and signal scaling,
or Hall sensors, to measure currents without interfering with the power circuit.

In our discussion we will simply assume that the required control signals are processed
by suitable conditioning circuits that, in general, will apply some scaling and filtering to each
electrical variable. The frequency response of these acquisition filters and the scaling factors
implied by sensors and conditioning circuits will be properly taken into account in the controller
design example we will present in the following chapters.
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2.1.3 Principle of Operation
The principle of operation of the half-bridge inverter of Fig. 2.1 is the following. Closing
the high-side switch S1 imposes a voltage across the load (i.e., VOC in the figure) equal to
+VDC. In contrast, closing the low-side switch S2 imposes a voltage −VDC across the load. If
a suitable control circuit regulates the average voltage across the load (see Section 2.1.4 for a
rigorous definition of the average load voltage) between these two extremes, it is clearly possible
to make the state variable IO follow any desired trajectory, provided that this is consistent
with the physical limitations imposed by the topology. The main limitation is obvious: the
voltage across the load cannot exceed ±VDC. Other limitations can be seen, giving just a little
closer look to the circuit. Considering, as an example, the particular case where ES and RS are
both equal to zero, the current IO will be limited in its variations, according to the following
equation: ∣∣∣∣dIO

dt

∣∣∣∣ ≤ VDC

LS
. (2.1)

In practice, the maximum current absolute value will be limited as well, mainly because
of the limited current handling capability of the active devices. This limitation, different from
the previous ones, is not inherent to the circuit topology and will need to be enforced by a
current controller, in order to prevent accidental damage to the switches, for example in the
case of a short circuit in the load. What should be clear by now is that any controller trying
to impose voltages, currents, or current rates of change beyond the above-described limits will
not be successful: the limit violation will simply result in what is called inverter saturation. It
is worth adding that, in our following discussion, we will consider linear models of the VSI,
capable of describing its dynamic behavior in a small-signal approximation. Events like inverter
saturation, typical of large signal inverter operation, will not be correctly modeled. In order to
further clarify these concepts, the derivation of a small-signal linear model for the VSI inverter
of Fig. 2.1 is presented in Aside 1.

In the most general case, the VSI controller is organized hierarchically. In the lowest level
a controller determines the state of each of the two switches, and in doing so, the average load
voltage. This level is called the modulator level. The strategy according to which the state of the
switches is changed along time is called the modulation law. The input to the modulator is the
set-point for the average load voltage, normally provided by a higher level control loop. A direct
control of the average load voltage is also possible: in this case the VSI is said to operate under
open loop conditions. However, this is not a commonly adopted mode of operation, since no
control of load current is provided.

Because of that, in the large majority of cases, a current controller can be found immedi-
ately above the modulator level. This is responsible for providing the set-point to the modulator.
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Similarly, the current controller set-point can be provided by a further external control loop or
directly by the user. In the latter case, the VSI is said to operate in current mode, meaning that
the control circuit has turned a voltage source topology into a controlled current source. We will
deal with further external control loops in one of the following chapters; for now, we will focus
on the modulator and current control levels.

Indeed, the main purpose of this chapter is exactly to explain how these two basic controller
levels are organized and how the current regulators can be properly designed.

2.1.4 Dead-Times
Before we move to describe the modulator level one final remark is needed to complete the
explanation of the VSI operation. The issue we want to address here is known as the switching
dead-time. It is evident from Fig. 2.1 that under no condition the simultaneous conduction of
both switches should be allowed. This would indeed result into a short circuit across the input
voltage sources, leading to an uncontrolled current circulation through the switches and, very
likely, to inverter fatal damage. Any modulator, whatever its implementation and modulation
law, should be protected against this event. In the ideal switch hypothesis of Section 2.1.1,
the occurrence of switch cross conduction can be easily prevented by imposing, under any
circumstances, logically complementary gate signals to the two switches. Unfortunately, in real-
life cases, this is not a sufficient condition to avoid cross conduction. It should be known from
basic power electronics knowledge that real switch commutations require a finite amount of time
and that the commutation time is a complex function of several variables such as commutated
current and voltage, gate drive current, temperature, and so on. It is therefore impossible to
rely on complementary logic gate signals to protect the inverter. An effective protection against
switch cross conduction is implemented by introducing commutation dead-times, i.e., suitable
delays before the switch turn-on signal is applied to the gate.

The effect of dead-times is shown in Fig. 2.2 in the hypothesis that a positive current
IO is flowing through the load. The figure assumes that a period of observation can be defined,
whose duration is TS, where switches S1 and S2 are meant to be on for times tON1 and tON2,
respectively, and where the load current is assumed to be constant (i.e., the load time constant
LS/RS is assumed to be much longer than the observation period TS). The existence of such an
observation period guarantees that the definition of average load voltage is well posed. By that
we simply mean the weighted average over time of the instantaneous load voltage in the period
of observation.

To avoid cross conduction the modulator delays S1 turn on by a time tdead, applying the
VGE1 and VGE2 command signals to the switches. The duration tdead is long enough to allow the
safe turn-off of switch S2 before switch S1 is commanded to turn on, considering propagation
delays through the driving circuitry, inherent switch turn-off delays, and suitable safety margins.
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FIGURE 2.2: Dead-times effect: when a positive current IO flows through the load, the actual on time
for switch S1 is shorter than the desired one. Consequently, the average voltage across the load is different
from the desired one.

At the time of writing (2006), the typically required dead-time duration for 600 V, 40 A IGBTs
was well below 1 μs. Of course, the dead-time required duration is a direct function of the
switch power rating.

Considering Fig. 2.2, it is important to note that the effect of the dead-time application is
the creation of a time interval where both switches are in the off state and the load current flows
through the free-wheeling diodes. Because of that, a difference is produced between the desired
duration of the switch S1 on time and the actual one, which turns into an error in the voltage
across the load. It is as well important to note that the opposite commutation, i.e., where S1 is
turned off and S2 is turned on, does not determine any such voltage error. However, we must
point out that, if the load current polarity were reversed, the dead-time induced load voltage
error would take place exactly during this commutation.

The above discussion reveals that, because of dead-times, no matter what the modulator
implementation is, an error on the load voltage will always be generated. This error �VOC,
whose entity is a direct function of the dead-time duration and whose polarity depends on the
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load current sign according to the relation

�VOC = −2VDC
tdead

TS
sign(IO), (2.2)

will have to be compensated by the current controller. Failure to do so will unavoidably determine
a tracking error on the trajectory the load current has to follow (i.e., current waveform distortion).
We will later see how some current controllers are inherently immune to dead-time induced
distortion, while others are not.

We cannot end this discussion of dead-times without adding that, motivated by the
considerations above, several studies have been presented that deal with their compensation.
Both off-line, or feed-forward, techniques and closed-loop arrangements have been proposed
to mitigate the problem. The interested reader can find very detailed discussions of these topics
in technical papers such as, for instance, [2] and [3].

2.2 LOW-LEVEL CONTROL OF THE VOLTAGE SOURCE INVERTER:
PWM MODULATION

The definition of a suitable modulation law represents the first step in any converter control
design. Several modulation techniques have been developed for switch mode power supplies:
the most successful, for the VSI case, is undoubtedly the pulse width modulation (PWM).
Compared to other approaches, such as pulse density modulation or pulse frequency modulation,
the PWM offers significant advantages, for instance in terms of ease of implementation, constant
frequency inverter operation, immediate demodulation by means of simple low-pass filters. The
analog implementation of PWM, also known as naturally sampled PWM, is indeed extremely
easy, requiring, in principle, only the generation of a suitable carrier (typically a triangular or
sawtooth waveform) and the use of an analog comparator. A simple PWM circuit is shown in
Fig. 2.3.

2.2.1 Analog PWM: the Naturally Sampled Implementation
Considering the circuit and what has been explained in Section 2.1, it is easy to see that, as a
result of the analog comparator and driving circuitry operation, a square-wave voltage VOC will
be applied to the load, with constant frequency fS = 1/TS, TS being the period of the carrier
signal c (t), and variable duty-cycle d . This is implicitly defined, again from Fig. 2.3, as the
ratio between the time duration of the +VDC voltage application period and the duration of the
whole modulation period, TS. Finally, Fig. 2.3 allows us to see the relation between duty-cycle
and the average value (in the modulation period) of the load voltage, which is calculated in
Aside 1.



14 DIGITAL CONTROL IN POWER ELECTRONICS

t

TS

c(t), m(t)
cPK

t

t

t

dTS

VOC(t) +VDC

-VDC

+

-

m(t)

c(t)

VGE1(t)
*

VGE2(t)
*

VGE1(t)
*

VGE2(t)
*

m(t)
c(t)

DRIVER

VMO(t)

COMPARATOR

FIGURE 2.3: Analog implementation of a PWM modulator. The analog comparator determines the
state of the switches by comparing the carrier signal c (t) and the modulating signal m(t). The figure
shows the logic state of each switch and the resulting inverter voltage. No dead-time is considered.

It is now interesting to explicitly relate the signal m(t) to the resulting PWM duty-cycle.
Simple calculations show that, in each modulation period, where a constant m is assumed, the
following equation holds:

m
d TS

= c PK

TS
⇔ d = m

c pk
. (2.3)

If we now assume that the modulating signal changes slowly along time, with respect
to the carrier signal, i.e., the upper limit of the m(t) bandwidth is well below 1/TS, we can
still consider the result (2.3) correct. This means that, in the hypothesis of a limited bandwidth
m(t), the information carried by this signal is transferred by the PWM process to the duty-cycle,
which will change slowly along time following the m(t) evolution. The duty-cycle, in turn, is
transferred to the load voltage waveform by the power converter. The slow variations of the
load voltage average value will therefore copy those of the signal m(t).

The simplified discussion above may be replaced by a more mathematically sound ap-
proach, which an interested reader can find in power electronics textbooks such as [4], [5], and
[6]. However, this approach would basically show that the frequency content, i.e., the spectrum,
of the modulating signal m(t) is shifted along frequency by the PWM process, and is replicated
around all integer multiples of the carrier frequency. This implies that, as long as the spectrum
of the signal m(t) has a limited bandwidth with an upper limit well below the carrier frequency,
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signal demodulation, i.e., the reconstruction of the signal m(t) spectrum from the signal VOC(t),
with associated power amplification, can be easily achieved by low-pass filtering VOC(t). In the
case of power converters, like the one we are considering here, the low-pass filter is actually
represented by the load itself.

Referring again to Fig. 2.1 and to Aside 1, it is possible to see that the transfer function
between the inverter voltage VOC and load current IO indeed presents a single-pole low-pass
filter frequency response. The pole is located at an angular frequency that is equal to the ratio
between the load resistance RS and the load inductance LS. Because of that, we can assume that,
if the load time constant, LS/RS, is designed to be much higher than the modulation period TS, the
load current IO average in the modulation period will precisely follow the trajectory determined
by the signal m(t). This is the situation described in Fig. 2.4. It is worth noting that, while the
average current is suitably sinusoidal, the instantaneous current waveform is characterized by
a residual switching noise, the current ripple. This is a side effect determined by the nonideal
filtering of high-order modulation harmonics, given by the load low-pass characteristics.

Aside 1. VSI State Space Model

The VSI represented in Fig. 2.1 can be described in the state space by the following equations:{
ẋ = Ax + Bu
y = Cx + Du

, (A1.1)

where x = [IO] is the state vector, u = [VOC, ES]T is the input vector, and y = [IO] is the
output variable. In this very simple case, the state and output vectors have unity size, but, in
the general case, higher sizes can be required to correctly model the converter and its load.
Direct circuit inspection yields

A = [−RS/LS], B = [1/LS, −1/LS], C = [1], D = [0, 0]. (A1.2)

Based on this model and using Laplace transformation, the transfer function between the
inverter voltage VOC and the output current IO, G IOVOC can be found to be

G IOVOC(s ) = C · (sI − A)−1 · B11 = 1
RS

· 1

1 + s
LS

RS

. (A1.3)

The transfer function (A1.3) relates variations of the inverter voltage VOC to the consequent
variations of the output current IO. The relation has been derived under no restrictive hy-
pothesis, meaning that it has a general validity. In particular, (A1.3) can be used to relate
variations of the average values of VOC and IO, where by average of any given variable v we
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mean the following quantity:

v(t) = 1
TS

∫ t+Ts

t
v(τ )dτ, (A1.4)

where TS is our observation and averaging interval. In the particular case of PWM control, the
definition (A1.4) is well posed once the averaging period TS is taken equal to the modulation
period.

Considering now the input variable VOC, we can immediately calculate its average value
as a function of the PWM duty-cycle. This turns out to be equal to

V OC(t) = 1
Ts

∫ t+Ts

t
VOC(τ )dτ

= 1
TS

(TS · VDC · d (t) − VDC(1 − d (t)) · TS) = VDC(2d (t) − 1), (A1.5)

where d (t) is the duty-cycle, as defined in Section 2.2. We can now easily calculate the
relation between variations of the duty-cycle d and variation of V OC. Perturbation of (A1.5)
yields

∂V OC

∂d
= 2VDC, (A1.6)

where VDC is assumed to be constant. In the assumption of small perturbations around any
given operating point, the transfer function between duty-cycle and load current can be
obtained substituting (A1.6) into (A1.3). We find

G(s ) = Ĩ O

d̃
(s ) = 2VDC

RS
· 1

1 + s
LS

RS

, (A1.7)

where Ĩ O and d̃ represent small perturbations of the variables IO and d around any selected
operating point. The result (A1.7) can be used in the design of current regulators.

In general, we will see how the removal of such switching noise from the control signals,
that is essential for the proper operation of any digital controller, is fairly easy to achieve, even
without using further low-pass filters in the control loop.

In the following sections, we will see how a current controller can be designed. The
purpose of the current controller will be to automatically generate the signal m(t) based on the
desired load current trajectory, which will be designated as the current reference signal.

Before we move to digital PWM and current control design, there is a final issue to con-
sider, related to the dynamic response of the PWM modulator [7–11]. Considering the circuit
in Fig. 2.3., it is possible to see that a sudden change in the modulating signal amplitude always



THE TEST CASE: A SINGLE-PHASE VOLTAGE SOURCE INVERTER 17

VOC(t) 

ES(t) 

t 

t 

IO(t) 

IO(t) 

VOC(t) 

FIGURE 2.4: Example of PWM application to the VSI of Fig. 2.1. The instantaneous load voltage
VOC(t) is demodulated by the low-pass filter action of the inverter load. The resulting load current IO(t)
has an average value, I O(t), whose waveform is determined by the instantaneous voltage average value
V OC(t) (and by the load voltage ES, here assumed to be sinusoidal).

implies an immediate, i.e., within the current modulation period, adjustment of the resulting
duty-cycle. This means that the analog implementation of PWM guarantees the minimum
delay between modulating signal and duty-cycle. This intuitive representation of the modula-
tor operation can be actually corroborated by a more formal mathematical analysis. Indeed, the
derivation of an equivalent modulator transfer function, in magnitude and phase, has been stud-
ied and obtained since the early 1980s. The modulator transfer function has been determined
using small-signal approximations [7], where the modulating signal m(t) is decomposed into a
dc component M and a small-signal perturbation m̃ (i.e., m(t) = M + m̃). Under these assump-
tions, in [7], the author demonstrates that the phase lag of the naturally sampled modulator
is actually zero, concluding that the analog PWM modulator delay can always be considered
negligible. Quite differently, we will see in the following section how the discrete time or digital
implementations of the pulse width modulator [8], which necessarily imply the introduction of
sample-and-hold effects, determine an appreciable, not at all negligible, delay effect.

2.2.2 Digital PWM: the Uniformly Sampled Implementation
The basic principles described in Section 2.2.1 apply also to the digital implementation of
the PWM modulator. In the more direct implementation, also known as “uniformly sampled
PWM,” each analog block is replaced by a digital one. The analog comparator function is
replaced by a digital comparator, the carrier generator is replaced by a binary counter, and so
forth. We can see the typical hardware organization of a digital PWM, of the type we can find
inside several microcontrollers and digital signal processors, either as a dedicated peripheral unit
or as a special programmable function of the general purpose timer, in Fig. 2.5.
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FIGURE2.5: Simplified organization of a digital pulse width modulator. The binary comparator triggers
an interrupt request for the microprocessor any time the binary counter value is equal to the programmed
duty-cycle (match condition). At the beginning of the counting period, the gate signal is set to high and
goes low at the match condition occurrence.

The principle of operation is straightforward: the counter is incremented at every clock
pulse; any time the binary counter value is equal to the programmed duty-cycle (match condi-
tion), the binary comparator triggers an interrupt to the microprocessor and, at the same time,
sets the gate signal low. The gate signal is set high at the beginning of each counting (i.e., mod-
ulation) period, where another interrupt is typically generated for synchronization purposes.
The counter and comparator have a given number of bits, n, which is often 16, but can be as low
as 8, in case a very simple microcontroller is used. Actually, depending on the ratio between the
durations of the modulation period and the counter clock period, a lower number of bits, Ne,
could be available to represent the duty-cycle. The parameter Ne is also important to determine
the duty-cycle quantization step, which can have a significant impact on the generation of limit
cycles, as we will explain in the following chapters. For now it is enough to say that, with this
type of modulator, the number Ne of bits needed to represent the duty-cycle is given by the
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following relation:

Ne = floor

⎡
⎣ log10

(
fclock

fS

)
log10 2

⎤
⎦ + 1, (2.4)

where fclock is the modulator clock frequency, fS = 1/TS is the desired modulation frequency,
and the floor function calculates the integer part of its argument. Typical maximum values for
fclock are in the few tens of MHz range, while modulation frequencies can be as high as a few
hundreds of kHz. Therefore, when the desired modulation period is short, the number of bits,
Ne, given by (2.4) will be much lower than the number bits, n, available in the comparator and
counter circuits, unless a very high clock frequency is possible.

Fig. 2.5. allows us to discuss another interesting issue about digital PWM, that is the
dynamic response delay of the modulator. In the considered case, it is immediate to see that
the modulating signal update is performed only at the beginning of each modulation period.
We can model this mode of operation as a sample and hold effect. We can observe that, if we
neglect the digital counter and binary comparator operation assuming infinite resolution, the
digital modulator works exactly as an analog one, where the modulating signal m(t) is sampled
at the beginning of each modulation period and the sampled value kept constant for the whole
period.

It is now evident that, because of the sample and hold effect, the response of the mod-
ulator to any disturbance, e.g., to one requiring a step change in the programmed duty-
cycle value, can take place only during the modulation period following the one where the
disturbance actually takes place. Note that this delay effect amounts to a dramatic differ-
ence with respect to the analog modulator implementation, where the response could take
place already during the current modulation period, i.e., with negligible delay. Therefore, even
if our signal processing were fully analog, without any calculation or sampling delay, pass-
ing from an analog to a digital PWM implementation would imply an increase in the sys-
tem response delay. We will see how this simple fact implies a significant reduction of the
system’s phase margin with respect to the analog case, which often compels the designer
to adopt a more conservative regulator design and to accept a lower closed loop system
bandwidth.

Since these issues can be considered fundamental for all the following discussions, from
the intuitive considerations reported above, we can now move to a precise small-signal Laplace-
domain analysis, which might be very useful for a clear understanding of control limitations
and delay effects implied by the uniformly sampled PWM.

An equivalent model of the uniformly sampled PWM process is represented in Fig. 2.6(a).
As can be seen, the schematic diagram adopts the typical continuous time model of a sampled
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FIGURE 2.6: Uniformly sampled PWM with single update mode: (a) general block diagram, (b)
trailing-edge modulation, (c) leading-edge modulation, (d) triangular carrier modulation.

data system, where an ideal sampler is followed by a zero-order hold (ZOH). The quantization
effect that is associated, in the physical implementation of the modulator of Fig. 2.5., with the
digital counter and binary comparator operation, is neglected, being irrelevant from the dynamic
response delay standpoint. Accordingly, in the model of Fig. 2.6(a), after the modulating signal
m(t) is processed by the ZOH, the PWM waveform is generated by an ideal analog comparator,
which compares the ZOH output signal ms(t) and the carrier waveform c (t).

Depending on c (t), several different uniformly sampled pulse-width modulators can be
obtained. For example, in Fig. 2.6(b) a trailing-edge modulation is depicted, where the update of
the modulating signal is performed at the beginning of the modulation period. Note that this is
an exactly equivalent representation of the modulator organization of Fig. 2.5. In a small-signal
approximation, it is possible to find that the transfer function between the modulating signal
m(t) and the output of the comparator VMO(t) is given by [7]

PWM(s ) = VMO(s )
M(s )

= e−s DTS

c PK
, (2.5)

where VMO(s ) and M(s ) represent the Laplace transforms of VMO(t) and m(t), respectively.
Therefore, the uniformly sampled modulator presents a delay whose value is proportional to
the steady-state duty-cycle D.

In more general terms, the delay introduced by the PWM modulator represents the time
distance between the modulating signal m(t) sampling instant and the instant when the output
pulse is completely determined (i.e., when ms(t) intersects c (t) in Fig. 2.6). The result (2.5)
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has been extended also to other types of modulator organizations (trailing edge, triangular
carrier, etc.) [8]. For example, for the leading-edge modulation represented in Fig. 2.6(c), the
small-signal modulator transfer function turns out to be

PWM(s ) = VMO(s )
M(s )

= e−s (1−D)TS

c PK
, (2.6)

while, for the triangular carrier modulation, where the sampling of the modulating signal is
done in the middle of the switch on period (Fig. 2.6(d)), it is

PWM(s ) = VMO(s )
M(s )

= 1
2c PK

(
e−s (1−D) TS

2 + e−s (1+D) TS
2

)
. (2.7)

Finally, the case of the triangular carrier modulator, where the sampling of the modulating
signal is done in the middle of the switch off period, can be simply derived from (2.7) substituting
D with D ′, being D ′ = 1 − D.

2.2.3 Single Update and Double Update PWM Mode
To partially compensate for the increased delay of the uniformly sampled PWM, the double
update mode of operation is often available in several microcontrollers and DSPs. In this mode,
the duty-cycle update is allowed at the beginning and at the half of the modulation period.
Consequently, in each modulation period, the match condition between counter and duty-cycle
registers is checked twice, at first during the run-up phase, then during the run-down phase.

In the occurrence of a match, the state of the gate signal is toggled. As can be seen in
Fig. 2.7, the result of this mode of operation is a stream of gate pulses that are symmetrically
allocated within the modulation period, at least in the absence of any perturbation. Interrupt

t

t

t

TS

Timer interrupt request

Gate signal

Timer count 

Programmed duty-cycle

FIGURE 2.7: Double update mode of operation for a digital pulse width modulator. Duty-cycle update
is allowed at the beginning and at a half of the modulation period. Note that the gate pulses are now
symmetrically allocated within the modulation period (in steady state).
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requests are generated by the timer at the beginning and at the half of the modulation period,
to allow proper synchronization with other control functions, e.g., with the sampling process.

It is also evident from Fig. 2.7 that, in the occurrence of a perturbation, the modulator
response delay is reduced, with respect to the single update case because, now, the duty-cycle
update can be performed at the occurrence of each half period interrupt request. In this case
though, an asymmetric pulse is generated, but symmetry is restored immediately afterward, so
that its temporary loss is of little consequence.

Maybe less evident is the drawback of this operating mode: given the number of bits, Ne,
needed to represent the duty-cycle and the clock frequency fclock, the switching period has to be
doubled to contain both the run-up and run-down phases. Of course, it is possible to maintain
the same modulation frequency of the single update case, but, in order to do that, either the
clock frequency needs to be doubled or the number of bits needs to be reduced by 1.

Following the reasoning reported in the previous section, we can derive an exact, con-
tinuous time equivalent model also of the digital PWM with double duty-cycle update. A
representation of this model is shown in Fig. 2.8. Simple calculations show that the small-
signal modulator transfer function is, in this case, given by [8]

PWM(s ) = VMO(s )
M(s )

= 1
2c PK

(
e−s D Ts

2 + e−s (1−D) Ts
2

)
. (2.8)

It is interesting to compare the modulator phase lag for the single and double update modes
of operation. In (2.7), we find arg(PWM(jω)) = −ωTs/2, while, in (2.8), arg(PWM(jω)) =
−ωTs/4, so that, as it could be expected, the modulator phase lag is reduced by one half in
the double update mode. This property can give significant benefits, in terms of the achievable
speed of response, for any controller built on top of the digital modulator.
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2.2.4 Minimization of Modulator Delay: a Motivation for Multisampling
In the more recent studies concerning digital control of power converters the key role played by
the modulator delay in limiting the achievable control bandwidth has been very well clarified.
A different approach has been suggested, which exploits the possibility of sampling control
variables, and consequently adjusting the duty-cycle, several times (e.g., 4, 8, 16 times) within
the modulation period. The purpose of this is to reduce the PWM response delay and increase
the system phase margin, extending the benefits seen for the double update in comparison with
the single update mode.

In order to evaluate the modulator phase lag, let us consider the system shown in Fig. 2.9:
the modulating signal is sampled N times during the switching period, so that the sampling
time is now Tsample = TS/N; moreover, in order to fully exploit the advantages of the multiple-
sampling technique, the control algorithm updates the control signal m(t) at each sampling
event. In the multisampled case, the PWM is modeled with an equivalent system similar to
that shown in Fig. 2.6, with the only difference that the input signal ms(t) is now a sequence
of variable amplitude pulses, updated with frequency fsample = N · fS. Accordingly, the hold
time of the ZOH is now Thold = Tsample = TS/N. It can be shown that the low-frequency,
small-signal behavior of the multisampled digital PWM is again that of a pure delay,

PWM(s ) = 1
c PK

e−std, (2.9)

but the equivalent delay time is now given by

td = DTS − floor(ND)
N

TS, (2.10)

where floor(ND) denotes the greatest integer which does not exceed N · D. Equations (2.9) and
(2.10) can be derived analytically with methods similar to those used in [7], for the uniformly
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sampled modulator, and applying a small-signal approximation. The first term D · TS in (2.10)
is the same delay as found in (2.5), and does not depend on the multisampling factor N. The
second term takes into account the multiple sampling effect, which is primarily that of reducing
the equivalent delay time, and thus the total phase lag introduced by the PWM. Moreover,
from (2.10) we can infer that, as N tends to infinity, the equivalent delay time tends to zero.
The result is obvious, since when N is high the multisampled PWM approaches the naturally
sampled modulator, where the phase lag is known to be zero.

The main drawback of such an approach is represented by the need for proper filtering of
the switching noise from the control signals, that is, instead, straightforward with the single or
double update mode. Filtering the control signals may impair the system phase margin, reducing
the advantage of the multisampled strategy. We will come back to this issue in Chapter 3, where
we will open the discussion of digital controllers. For now, it will be enough to say that some
research is in progress around the world to find means to get the needed filtering without
worsening the system stability margin, for example using sophisticated estimation techniques.
One last remark about multisampling refers to the hardware required for the implementation.
This is significantly different from what can be considered the standard PWM organization,
available with off the shelf microcontrollers and DSPs, and calls for other solutions, e.g., the
use of hardware programmable digital control circuits, like those based on field programmable
gate arrays (FPGAs).

2.3 ANALOG CONTROL APPROACHES
We begin here to deal with the control problem this book is all about. In order to better appreciate
the merits and limitations of the digital approach, we will now briefly discuss two possible analog
implementations of a current control loop: the PI linear controller and the nonlinear hysteresis
controller. We refer to our test case, as represented in Fig. 2.1, but in order to make some explicit
calculations, we will take into account the parameters listed in Table 2.1.

In this example we suppose that the purpose of the VSI is to deliver a given amount of
output power PO to the load, which is represented by the voltage source ES. The resistor RS may
represent the lossy elements of the load and of the inverter inductor. What we are discussing
can be thought as the typical ac motor drive application, where a sinusoidal current of suitable
amplitude and given frequency, fO, must be generated on each motor phase. Consequently, we
have also taken into account the presence of a current transducer, whose gain, GTI, is given in
Table 2.1, and that may be in practice implemented by a Hall sensor.

For the controller implementation, we can assume that one of the average current mode
control integrated circuits, available on the market, is used. This will generally include all the
needed functions, from error amplification and loop compensation to PWM modulation. Of
course, to keep the discussion simple, the presence of additional signal scale factors, for example
due to internal voltage dividers, is not taken into account. Also, the PWM parameters reported
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TABLE 2.1: Half-Bridge Inverter Parameters

Rated output power, PO 1000 (W)
Phase inductance, LS 1.5 (mH)
Phase resistance, RS 1 (�)
Phase load voltage, ES 100 (VRMS)
Load frequency, fO 125 (Hz)
DC link voltage, VDC 250 (V)
Switching frequency, fS 50 (kHz)
PWM carrier peak, c PK 4 (V)
Current transducer gain, GTI 0.1 (V/A)

in Table 2.1, although realistic, do not necessarily represent those of any particular integrated
controller.

2.3.1 Linear Current Control: PI Solution
Fig. 2.10 shows the control loop block diagram, where all the components are represented by
their respective transfer functions or gains. In particular, the controller block is represented
by the typical proportional integral regulator structure, whose parameters KP and KI will be
determined in the following. The output of the regulator represents the modulating signal that
drives the pulse width modulator. This has been modeled as the cascade combination of two
separate blocks: the first one is the modulator static gain, as given by (2.3), the second one is
actually a first-order Padé approximation of its delay, considered equal to a half of the duration
of the modulation period.

This choice deserves some clarification, since we have previously assessed the delay effect
of an analog PWM to be negligible. The point is that, for reasons that will be fully motivated
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FIGURE 2.10: Control loop block diagram.
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in Chapter 3, we are here considering the modulator as if it was digitally implemented, i.e.,
characterized by the sample and hold delay that we have previously described. From Section 2.2,
we know that the equivalent model of the digital modulator can be given by (2.5), (2.6), or,
possibly, (2.7). The proper characterization of these models is a little complicated. For this
reason, in Fig. 2.10, we consider the response delay of the digital PWM to be, on average, equal
to a half of the modulation period and we model this average delay with its first-order Padé
approximation. In Chapter 3, we will clearly account for this approximation and show that this
is actually not penalizing.

Considering now the inverter and load models, we see that they are exactly based on the
analysis presented in Aside 1. Finally, to fully replicate a typical implementation, a transducer
gain is taken into account. Additional filters, which are normally adopted to clean the transducer
signal from residual switching noise, are instead not taken into account, in favor of a more
essential presentation. Their transfer functions can be easily cascaded to the transducer block
gain if needed.

Given the block diagram of Fig. 2.10, the design of the PI compensator is straightforward.
However, for the sake of completeness, we present the simple design procedure in Aside 2. Once
the proper KP and KI values are determined, we still may want to check the system dynamic
behavior and verify if a stable closed loop controller with the desired speed of response has been
obtained.

In order to do that, before developing any converter prototype, it is very convenient to
use one of the several dynamic system software simulators available. The simulation of the
VSI depicted in Fig. 2.1, together with its current controller, gives the results described by
Fig. 2.11. In particular, Fig. 2.11(a) shows the response of the closed loop system to a step
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FIGURE 2.11: Simulation of the VSI depicted in Fig. 2.1 with the controller designed according to
the procedure reported in Aside 2. The depicted variable is the VSI output current IO. (a) Controller
response to a step reference amplitude change. (b) Details of the previous figure.
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change in the IOREF current reference amplitude. It is possible to see that the closed loop plant
is properly controlled, with a sufficiently high phase margin not to incur in oscillations after
the transient. Fig. 2.11(b) shows the details of the transient response: the controller reaches the
new steady-state condition in three modulation periods, exhibiting no overshoots.

It is worth noting that an anti wind-up action is included in the PI controller to prevent
deep saturation of the integral controller during transients. One closing remark in Fig. 2.11(b)
is due: an appreciable, albeit relatively small, steady-state tracking error between the reference
signal (continuous line) and the instantaneous current average value (i.e., once the current ripple
is filtered, dashed line), is visible both before and after the transient. This represents the residual
tracking error of the current controller. As any other controller including an integral action,
our PI is able to guarantee zero steady-state tracking error only for dc signals. In the case of
an ac reference signal, as that of Fig. 2.11(b), a residual error will always be found, whose
amplitude depends on the closed loop system gain and phase at the particular reference signal
frequency.

Aside 2. Design of the Analog PI Current Controller

At first, we want to determine the open loop gain for the block diagram of Fig. 2.10. This
is given by the cascade connection of all blocks. We find

GOL(s ) =
(

KP + KI

s

)
2VDC

c PK

1 − s
TS

4

1 + s
TS

4

GTI

RS

1

1 + s
LS

RS

. (A2.1)

The regulator design is typically driven by specifications concerning the required closed loop
speed of response or, equivalently, the maximum allowed tracking error with respect to the
reference signal. These specifications can be turned into equivalent specifications for the
closed loop bandwidth and phase margin. To give an example, we suppose that, for our
current controller, a closed loop bandwidth, fCL, equal to about one sixth of the switching
frequency fS is required, to be achieved with, at least, a 60◦ phase margin, phm .

We therefore have to determine the parameters KP and KI so as to guarantee the compli-
ance to these requirements.

To rapidly get an estimation of the searched values, we suppose that we can approximate
the open loop gain at the crossover angular frequency, i.e., at ω = ωCL = 2π fCL, with the
following expression:

GOL ( jωCL) ∼= KP
2VDC

c PK

1 − jωCL
TS

4

1 + jωCL
TS

4

GTI

RS

1

1 + jωCL
LS

RS

, (A2.2)
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which, in principle, will be a good approximation as long as KI � ωCL KP (to be verified
later). Imposing now the magnitude of (A2.2) to be equal to one at the desired crossover
frequency, we get

KP = c PK

2VDC

RS

GTI

√
1 +

(
ωCL

LS

RS

)2

. (A2.3)

The parameter KI can then be calculated considering the open loop phase margin and
imposing that to be equal to phm . We find from (A2.1)

− 180◦ + phm = −90◦ − 2 tan−1
(

ωCL
TS

4

)
− tan−1

(
ωCL

LS

RS

)
+ tan−1

(
ωCL

KP

KI

)
,

(A2.4)

which yields

KI = ωCL KP

tan
(

−90◦ + phm + 2 tan−1

(
ωCL

TS

4

)
+ tan−1

(
ωCL

LS

RS

)) . (A2.5)

Note that (A2.5) is exact; only the KP value is obtained through an approximation. Con-
sidering the parameters listed in Table 2.1 and ωCL = 2π fS/6 ∼= 52.4 krad s−1, we can
immediately find the following values:

KP = 6.284
KI = 1.802 × 104 (rad s−1).

It is easy to verify that the condition KI � ωCL KP is reasonably met by this solution.
Nevertheless, in order to explicitly evaluate the quality of the approximated solution, we can
compare the values above with the solutions of the exact design equations. We practically
need to solve the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KI

KP
= ωCL

tan
(

−90◦ + phm + 2 tan−1

(
ωCL

TS

4

)
+ tan−1

(
ωCL

LS

RS

))

KP = c PK

2VDC

RS

GTI

√√√√√√√√
1 +

(
ωCL

LS

RS

)2

1 +
(

1
ωCL

KI

KP

)2

(A2.6)

The solution yields KP = 6.274, KI = 1.8 × 104 (rad s−1).
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As can be seen, the exact values are very close to those found by the approximated procedure
above. This happens in the large majority of practical cases, so that (A2.3) and (A2.5) can
be very often directly used.

As a final check of the design, we now present the Bode plot of the open loop gain, where
the desired crossover frequency and phase margin can be read.
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FIGURE A2.1: Bode plot of the open loop gain.

An interesting advantage of the PI current controller usage is the automatic compensation
of dead-time induced current distortion. Referring to our brief discussion in Section 2.1.4, it
is possible to see how, from the current controller standpoint, the dead-time effect can be
equivalently seen as a disturbance signal that sums with the average inverter output voltage,
generated by an ideal (i.e., with no dead-times) pulse width modulator. If the dead-time duration
can be considered constant, as is often the case, the disturbance signal is very close to a square
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wave, whose amplitude is directly proportional to the dc link voltage and to the dead-time
duration and inversely proportional to the switching period duration (2.2). Compared to the
output current signal, this square wave has the same frequency and opposite phase. We know
that the PI controller guarantees a significantly higher than unity open loop gain at the current
reference frequency (see the Bode plot in Aside 2), which is typically maintained for at least a
decade above. As a result, the controller will reject the disturbance quite effectively: only minor
crossover effects, due to an incomplete compensation of the higher order harmonics of the
square wave, will be observable on the output current waveform.

2.3.2 Nonlinear Current Control: Hysteresis Control
The PI controller discussed above is not the only possible solution to provide the VSI of Fig. 2.1
with a closed loop current control. Other approaches are viable, among which the hysteresis
current controller is the most successful. Even if we are not going to develop this topic in detail,
we still would like to briefly describe the principles of this type of analog current controller,
just not to give to the reader the wrong feeling that analog current control only amounts to PI
regulators and PWM.

It is important to underline from the start that the hysteresis controller is a particular
type of bang-bang nonlinear control and, as such, the dynamic response it is able to guarantee
is extremely fast; actually it is the fastest possible for any VSI with given dc link voltage and
output inductance. The basic reason for this is that the hysteresis controller does not require
any modulator: the state of the converter switches is determined directly by comparing the
instantaneous converter current with its reference. A typical hysteresis current controller is
depicted in Fig. 2.12.

As can be seen, an analog comparator is fed by the instantaneous current error, and
its output directly drives the converter switches. Thanks to the VSI topology and to the fact
that the dc link VDC voltage will always be higher than the output voltage ES peak value, the
current derivative sign will be positive any time the high-side switch is closed and negative
any time the low-side switch is closed. This guarantees that the controller organization of
Fig. 2.12 will maintain the converter output current always close to its reference. Under the
limit condition of zero hysteresis bandwidth, the current error can be forced to zero as well:
unfortunately this condition implies an infinite frequency for the switch commutations, which is,
of course, not practical. In real-life implementations, the hysteresis bandwidth is kept sufficiently
small to minimize the tracking error without implying too high switching frequencies. As
a consequence, also the compensation of dead-time induced current distortion will be very
good.
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FIGURE 2.12: Hysteresis current control hardware organization.

What is even more important, in the case of any transient, which may bring the instan-
taneous current outside the hysteresis band, the controller will almost immediately close the
right switch to bring the current back inside the band, thus minimizing the response delay and
tracking error. Clearly, there is no linear controller that can be faster than this.

Nevertheless, the hysteresis current controller is not ubiquitously used in power electron-
ics. That is because, despite its speed of response and high-quality reference tracking capabilities,
this type of controller does have some drawbacks as well. The main is represented by a vari-
able switching frequency. Indeed, any time the current reference is not constant the converter
switching frequency will vary along the current reference period. The same holds in case the
output voltage ES is variable. The range of frequency variation can be very large, thus making
the proper filtering of the high-frequency components of voltages and currents quite expensive.
Moreover, in the VSI applications like controlled rectifiers or active filters, the injection of a vari-
able frequency noise into the utility grid is not recommended, because unpredictable resonances
with other connected loads could be triggered. To solve this and other problems a considerable
research activity has been developed in the last few years. Different control solutions, which try
to keep the benefits of the hysteresis controller and, for example, get a fixed switching frequency
out of it, have been proposed. We are not going to deal with this advanced topics. However, the
interested reader can find much useful information in technical papers such as [12] or [13].
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C H A P T E R 3

Digital Current Mode Control

In this chapter we begin the discussion of digital control techniques for switching power convert-
ers. In the previous chapter, we have introduced the topology and operation of the half-bridge
VSI and designed an analog PI current controller for this switching converter. Referring to that
discussion, the first part of this chapter is dedicated to the derivation of a digital PI current
controller resembling, as closely as possible, its analog counterpart. We will see how, by us-
ing proper discretization techniques, the continuous time design can be turned into a discrete
time design, preserving, as much as possible, the closed loop properties of the former. It is
important to underline from the beginning that the continuous time design followed by some
discretization procedure is not the only design strategy we can adopt. Discrete time design is
also possible, although its application is somewhat less common: as we will explain, its typical
implementations rely on the use of state feedback and pole placement techniques. The second
part of the chapter will describe in detail a remarkable example of discrete time design and,
in doing so, it will also show how the synthesis of regulators that have no analog counter-
part whatsoever can be implemented. This is the case of the predictive or dead-beat current
controller.

3.1 REQUIREMENTS OF THE DIGITAL CONTROLLER
The first step in the design of a digital controller is always the implementation of a suitable
data acquisition path. While signal acquisition organization is somehow implicit in analog con-
trol design, because both the plant and the controller operate in the continuous time domain,
digital control requires particular care in signal conditioning and analog to digital conversion
implementation. The reason for this is ultimately that, while the control signals are taken from
a plant that operates in the continuous time domain, the operation of the controller takes place
in the discrete time domain. Therefore, signals have to be converted from the continuous to the
discrete time domain and, of course, the other way round. It is very important to be aware of the
fact that not every implementation of this conversion process leads to a satisfactory controller
performance. We will see how the control of conversion noise and the avoidance of aliasing
phenomena play a critical role.
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FIGURE 3.1: Typical organization of a digital current controller.

3.1.1 Signal Conditioning and Sampling
The typical organization of a digital current controller for the considered VSI is depicted in
Fig. 3.1. Compared to Fig. 2.1, the power converter is represented here in a more compact
form, using ideal switches and just a schematic representation of the driving circuitry, as these
details are not essential for the following discussion. As can be seen, we assume that the digital
controller is developed using a microcontroller (μC) or digital signal processor (DSP) unit, with
suitable built-in peripherals. Although this is not the only available option for the successful
implementation of a digital controller, it is by far more commonly encountered. Because of
this, we will not discuss other possibilities, such as the use of custom digital circuits or field
programmable gate arrays (FPGAs). Almost every μC and several low-cost DSP units, typi-
cally identified as motion control DSPs or industrial application DSPs, include the peripheral
circuits required by the setup of Fig. 3.1. These are basically represented by an analog to digital
converter (ADC) and a PWM unit. The data acquisition path for our current controller is very
simple, being represented by the cascade connection of a current sensor, a properly designed
signal conditioning electronic circuit, and the ADC. It is worth adding some comments about
the conditioning circuit, with respect to its general features described in Section 2.1.2, in or-
der to relate its function more precisely to the ADC operation. From this point of view, the
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conditioning circuit has to guarantee that (i) the sensor signal is amplified so as to fully exploit
the input voltage range of the ADC, and (ii) the signal is filtered so as to avoid aliasing effects.

The full exploitation of the ADC input voltage range is a key factor to reduce the quanti-
zation effects that may undermine control stability and/or reduce the quality of the regulation.
The reason for this is that the number of effective bits, Ne, that are used for the internal represen-
tation of the input signal samples is maximum when the input voltage range is fully exploited.
We can actually see that this number is given by the following relation,

Ne = n − floor

(
log10

FSR
SPP

log10 2

)
, (3.1)

where SPP is the peak-to-peak amplitude (in Volts) of the transduced input signal, FSR is the
ADC full scale range (in Volts), and n is the ADC bit number. A little complication we typically
find when designing the conditioning circuit is related to the sign of the input signal. It is quite
common for the transduced current signal to be bipolar (i.e., to have both positive and negative
sign), while the lower bound of the ADC voltage range is almost always zero. To take care of
that, the conditioning circuit has to offset the input signal by a half of the ADC FSR. This
operation associates the lower half of the ADC range with the negative values of the input
signal, and the upper half with the positive values. These simple considerations are normally
enough to properly design the gain of the conditioning amplifier in the frequency band of
interest. Given the expected peak-to-peak amplitude of the VSI output current and considering
a suitable safety margin for the detection of overcurrent conditions, due to load transients or
faults, it is immediately possible to determine the gain required to exploit the ADC full scale
range.

The aliasing phenomenon is a consequence of the violation of Shannon’s theorem, which
defines the limitations for the exact reconstruction of a uniformly sampled signal [1]. The
theorem shows that there is an upper bound for the sampled signal bandwidth, beyond which
perfect reconstruction, even by means of ideal interpolation filters, becomes impossible and
aliasing phenomena appear. The limit frequency is called the Nyquist frequency and is proved
to be equal to a half of the sampling frequency, fC. In general, we will have to limit the
frequency spectrum of the sampled signal by filtering, so as to make it negligible above the
Nyquist frequency. This condition will determine the bandwidth and roll-off of the conditioning
amplifier. A very intuitive graphical representation of the aliasing phenomenon is given in
Fig. 3.2.

Another interesting issue, related to signal acquisition in digital control, is the definition
of a suitable ADC model. From Fig. 3.1 we can see that the analog to digital conversion process
can be mathematically modeled as the cascade connection of an ideal sampler and an n-bit
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uniform quantizer. The former is defined as a sampler whose output is a stream of null duration
pulses, each having an amplitude equal to that of the input signal at the sampling instant. Its
function is to model the actual sampling process, i.e., the transformation of the time variable
from the continuous domain to the discrete domain, where time only exists as integer multiples
of a fundamental unit, the sampling period. The latter is taken into account to model the loss
of information implied by what can be interpreted as a coding procedure, where a continuous
amplitude signal, i.e., a signal whose instantaneous level can vary with continuity in a given
range of values, is transformed into a discrete amplitude signal, i.e., a digital signal, whose
instantaneous level can only assume a finite number of values in the same given range. Because
the possible discrete values can be interpreted as integer multiples of a fundamental unit, the
quantization step Q, or, equivalently, the least significant bit (LSB), the quantizer is called
“uniform.” Nonuniform quantizers can sometimes be encountered, but very rarely in the kind
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FIGURE 3.3: (a) Uniform quantizer transcharacteristic and quantization error eq. (b) Sample and hold
delay effect: compare the input signal (continuous line) and the reconstructed output signal, i.e., the
fundamental harmonic component of the sampled signal (dotted line).

of application we are interested in. For this reason, we will only discuss the uniform quantizer
case. The typical transcharacteristic diagram for a uniform quantizer is shown in Fig. 3.3(a). As
can be seen, a typical quantization noise eq can be defined that is added to the signal as a result
of analog to digital conversion. This can be interpreted as the loss of some of the information
associated with the input signal, inherent to the analog to digital conversion and unavoidable.
We will further discuss this phenomenon in one the following paragraphs. As far as the dynamic
behavior of the ADC is concerned, it should be evident that both the quantizer and the ideal
sampler are essentially instantaneous functions, which do not contribute to the dynamics of the
system.

Fig. 3.1 reveals another interesting point about the digital current controller organization,
which is related to the digital PWM. This component processes the output of the control
algorithm, a discrete time signal, and turns it into a continuous time signal, the state of the
switches. This function, which represents the inverse of the sampling process and allows the
controller to actuate the system under control, is known as interpolation. It is now evident that,
from the digital control theory’s standpoint, the DPWM is the part of our control system where
interpolation takes place.

For reasons that will become clear in the following, it is often important to develop a
continuous time equivalent model of the controller, i.e., of everything that is included between



38 DIGITAL CONTROL IN POWER ELECTRONICS

the sampler and the interpolator. In other words, we often are interested in a mathematical
description of the digital controller as it is “seen” from the external, continuous time world’s
standpoint. This problem can be solved by considering what is known as a zero-order hold
(ZOH) approximation of the interpolation process. Neglecting the presence of the control
algorithm, we can describe this model simply by considering that, in order to reconstruct the
continuous time signal from the discrete time input samples, each sample value is held constant
for the entire duration of the sampling period. It is actually possible to use different interpolation
models [2], but, for the problems of our interest, this is normally a good enough model. We will
see in the following how this approach is related to the DPWM equivalent continuous time
models presented in Chapter 2.

However, it is immediate to recognize in this function a typical dynamic effect: anytime
a signal is sampled and converted again into a continuous time signal by the interpolator, which
we have now modeled as a simple holder, we cannot reconstruct exactly the original signal, but
we have to face a delay effect that is directly proportional to the sampling period. An example
of this effect is shown in Fig. 3.3(b). We will come back to this issue in Section 3.2.2, when we
discuss the digital controller design technique based on discretization.

3.1.2 Synchronization Between Sampling and PWM
The general considerations presented in the previous section have to be extended considering
the particular nature of the system we want to control. As defined in Chapter 2, the VSI is
controlled at the lowest level by a PWM modulator. This determines the presence, on each
electrical variable, of the typical high-frequency noise known as ripple. It is fundamental to
clarify how this is taken care of in the sampling process.

It is evident that, in order not to violate Shannon’s theorem, the sampling process should
proceed at a very high frequency, so high that the spectrum of the sampled signal might be
considered negligible at the Nyquist frequency, even if a significant ripple is observable. This
would require a sampling frequency at least one order of magnitude higher than the switching
frequency. Unfortunately, hardware limitations do not allow the sampling frequency to become
too high: we must keep in mind that our controller implementation will be based on standard
microcontroller or DSP hardware.

When we discuss the adoption of multisampling strategies, we will see how they require
a nonconventional hardware organization; for example, the use of FPGA circuits. In a typical
case, instead, since the duty-cycle update is allowed at most twice per modulation period, in the
double update mode of operation of the digital PWM, the sampling frequency cannot get higher
than twice the switching frequency. Of course, in order to push the bandwidth of the closed loop
plant as high as possible, we are normally not interested in sampling frequencies lower than the
allowed maximum, at least for the current controller. When, in one of the following chapters,
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we discuss the application of digital control to external loops, we will see how sometimes lower
sampling frequencies can offer some advantages. However, in the case of a current controller,
the sampling frequency should be maximized. The reason for this is quite obvious: by doing so
the inherent sample and hold delay can be minimized and, consequently, the closed loop plant
bandwidth can be maximized.

In conclusion, in a typical case, the sampling frequency will be set equal to either the
switching frequency, or, if this is consistent with the available digital PWM implementation,
two times the switching frequency. But if this is what we do, the Shannon’s theorem conditions
will always be violated!

This is one of the key issues in digital control applications to power electronic circuits: the
typically recommended high ratio between sampling frequency and sampled signal bandwidth
will never be possible. Nevertheless, we will shortly see how this is normally advantageous, rather
than detrimental, for the controller effectiveness. The reason for this lies in synchronization.

If the sampling and switching processes are suitably synchronized, the effect of aliasing
is the automatic reconstruction of the average value of the sampled signal, which is exactly what
has to be controlled. This means that the violation of the Shannon’s theorem conditions does not
actually limit the controller performance, but it even helps to reduce the controller complexity.
The need for low-pass filters to eliminate the ripple from the sampled signal is, in fact, removed.
This effect is schematically shown in Fig. 3.4.

We can see that synchronization allows the reconstruction of the average signal value
anytime the sampling takes place in the middle of the switch-on period or in the middle of

TS 

Synchronized Not synchronized 

Sampled signal 
(load current) 

t

-Vdc 

Vdc 

Reconstructed 
signals 

Instantaneous 
load voltage 

FIGURE 3.4: Example of synchronized sampling and switching processes. In case the sampling takes
place always at the beginning (or in the middle) of the modulation period, the average current value
is automatically obtained. If the sampling frequency is lower than the switching one, an aliased, low-
frequency component appears on the reconstructed signal.
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the switch-off period (or both, if double update mode is possible). Instead, if the switching
and sampling frequencies are different, low-frequency aliased components will be created in
the reconstructed signal. Please note that, even if the sampling and switching frequencies are
set equal, there still can be a zero frequency error in the reconstruction of the average sampled
signal, in case the sampling instants are not coincident with the beginning and/or the half of
the modulation period. This is generally a minor problem, since the current regulator will often
be driven by an external loop (see Chapter 5) that, typically including an integral action, will
compensate for any steady-state (or very low frequency) error in the current trajectory.

To minimize aliasing effects and reconstruction errors, practically all of the microcon-
trollers and DSPs designed for power converters control allow virtually perfect synchronization
of the sampling and switching processes. In most cases, the ADC operation is synchronized
by the processor hardware with the modulator. Typically, analog to digital conversion of the
control variables is started by a signal that also clocks the beginning of the modulation period
and can be retriggered at a half of the modulation period, if needed.

3.1.3 Quantization Noise and Arithmetic Noise
Quantization of variables and finite arithmetic precision are two among the most critical issues
in digital control. Even if a detailed discussion of these issues is far beyond the scope of this
book, we feel that it is mandatory to recall at least some basic information about both of them.
The interested reader can deepen his or her knowledge of both issues referring to very good
digital control and digital signal processing textbooks such as [1–3].

As we briefly discussed in Section 3.1.1 quantization takes place anytime the amplitude
values of a sampled signal are coded using a finite set of symbols. While the original signal’s
instantaneous amplitude can assume an infinite number of values in a given range, the sampled
and coded signal’s amplitude can only take one out of a finite number of possible values. The
typical implementation of analog to digital conversion in microcontrollers and DSPs associates
a binary code with the amplitude values of the sampled signal. In the case of the uniform
quantizer, the rule to associate a binary code N with any given signal sample x is very simple,
and can be mathematically expressed as⎧⎪⎪⎨

⎪⎪⎩
(

N − 1
2

)
· Q < x <

(
N + 1

2

)
· Q ⇒ xq = N

Q = FSR
2n

= LSB,

(3.2)

where n represents the ADC bit number and, as was previously described, if FSR represents
the full scale range, in volts, of the ADC, then Q is the ADC quantization step, equal to one
least significant bit (LSB). Please note that (3.2) simply translates the transcharacteristic of the
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uniform quantizer depicted in Fig. 3.3(a) into a mathematical form. From (2.3) we see that Q
represents the minimum variation of input signal x that always causes the variation of at least
one bit in the binary code associated with xq , the coded signal. Therefore, any variation of signal
x smaller than Q is not always able to determine some effect on xq. This simple observation
shows us that the quantization process actually implies the loss of some of the information
associated with the original signal x. It is a common approach to model this effect as an additive
noise, superimposed to the signal. In order to simplify the mathematical characterization of
the quantization noise, the stochastic process associated with it is assumed not to be correlated
to signal x, which is (obviously) hardly the case, uniform in probability density and with a
statistical power equal to

σ 2
q = LSB2

12
. (3.3)

It is then possible to derive a very useful relation that expresses the maximum signal to
noise ratio (SNR) of an ADC as a function of its number of bits. This is given by

SNR = 10 · log10

(
12
8

· 22n
)

= 6.02 · n + 1.76 (dB). (3.4)

We will not elaborate the statistical modeling of the quantization noise any further.
Equation (3.4) is a very useful tool to estimate the number of bits one needs, in order to get a
desired SNR for a given conversion process. For example, if one needs at least a 50 dB SNR,
(3.4) shows that the number of bits should be higher than 8. Please note that this model does
not take into account any other source of noise besides quantization, like, for example, those
associated with the signal conditioning circuitry or with the power converter. Consequently, the
actual signal to noise ratio will always be lower than what is estimated by using (3.4).

There are at least two other major forms of quantization that always take place in the
implementation of a digital control algorithm: (i) arithmetic quantization and (ii) output quan-
tization. As far as the former is concerned, we can say that what we call arithmetic quantization
is nothing but an effect of the finite precision that characterizes the arithmetic and logic unit
used to compute the control algorithm. The finite precision determines the need for truncation
(or rounding) of the controller coefficients’ binary representations, so as to fit them to the num-
ber of bits available to the programmer for variables and constants. In addition, it may determine
the need for truncation (or rounding) after multiplications. In general, the effect of coefficient
and multiplication result truncation (or rounding) is a distortion of the controller’s frequency
response, i.e., the shift of the system poles, that can have some impact on the achievable per-
formance. Both truncation and rounding effects can be modeled again as a type of quantization
and so as an equivalent noise, of arithmetic nature, added to the signal. Although extremely
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interesting, predicting the amplification of arithmetic noise within a closed loop control algo-
rithm by pencil and paper calculations is a really tough job. To check the control algorithm
operation to this level of detail, the only viable option is its complete, low-level simulation,
based on a model that includes the emulation of the adopted controller arithmetic unit.

It should be clear by now that, in case a floating-point representation of constants and
variables within a control algorithm were employed, none of the above-discussed arithmetic
quantization effects could be observed. It is important to say, though, that the availability of
floating-point processors in the field of digital control industrial applications is very rare. At
the time of writing (2006), only state-of-the-art DSP units, designed for high-performance
real-time signal processing, can rely on a floating-point arithmetic unit. However, the cost of
such DSP units is well beyond the maximum affordable for a typical industrial control appli-
cation. Therefore, at least for the near future, industrial engineers, designing digital regulators
for switching converters, will have to face the problems generated by fixed-point arithmetic
units. Fortunately, the availability of low-cost 16- or even 32-bit microcontrollers and DSPs
is increasing every day. The occurrence of severe arithmetic quantization problems is therefore
rarer and rarer, being confined to extremely demanding applications or to applications where
the use of 8-bit microcontrollers is the only viable option and the emulation of a higher preci-
sion arithmetic is out of the question for memory or timing constraints. It is basically for this
reason that we will not take arithmetic quantization into account in the following discussion of
digital control implementation. In practice, our results will be determined by assuming infinite
precision arithmetic, considering it to be well approximated by modern 16-bit digital controllers.

Output quantization, instead, is related to the truncation (or rounding) operation inherent
in the digital to analog conversion that brings the control algorithm output variable back from
the digital to the continuous time domain. In our application case, this function is actually
inherent in the digital PWM (DPWM) process. The reduction of the control variable output
(in our case the desired duty-cycle) bit number, needed to write it into the PWM duty-cycle
register, represents again a quantization noise source. Note that unless a very high clock to
modulation frequency ratio is available (see Section 2.2.2), the effective number of bits that
might be used to represent the duty-cycle is always much smaller than the typical variable bit
number (16 or 32). Therefore, output quantization is unavoidable. The most unpleasing effect
of output quantization may be the occurrence of a peculiar type of instability, specific to digital
control loops, that is known as limit cycle oscillation (LCO).

To open just a brief discussion of LCOs, we would like to show, in the first place, how
a limit cycle can be generated in a very simple situation. The case is depicted in Fig. 3.5.
We denote by variable d the duty-cycle of a switching converter, like the one considered in
our discussion, whose desired set-point is the particular value we need to apply to bring the
converter to the steady state. Variable x may be associated, for example, with the converter



DIGITAL CURRENT MODE CONTROL 43

dq001

0.125

0.250

010 011

0.375

0.500 desired setpoint

e<0

e>0

t

3

2

100

d x

TLCO

[a.u.]

FIGURE 3.5: Example of limit cycle occurrence. The desired set-point for the output control variable d
is not one of the possible output values. Consequently, the system oscillates, with period TLCO, between
the two closest outputs. Here we assume that the system includes at least one integral action in the
transfer function from the input to the output.

average output current. Unfortunately, as we see from Fig. 3.5, the desired set-point for d is not
any one of the possible outputs, because of output quantization.

As a result, we will in any case apply either a bigger than needed duty-cycle, causing
the current increase beyond the steady-state level, or a lower than needed duty-cycle, causing
the current decrease below the steady-state value. This happens because the converter output
current is, to a first approximation, proportional to the integral of the inverter average output
voltage, which is in turn proportional to the duty-cycle. Commutations between the two states
are determined by the current controller, which reacts to the current error buildup by changing
the duty-cycle.

This results in a persistent oscillation, i.e., a limit cycle, of the control variables, which is
not due to any system instability but only to the presence of the output quantization. Of course,
the amplitude and frequency of the limit cycle are largely dependent on several controller and
converter parameters like, for example, controller bandwidth, open loop system time constants
and open loop system static gain. Please note that in the cases like the half-bridge converter con-
sidered here, where the input to output converter transfer function presents a low-pass behavior,
well approximated by an integral action, this type of limit cycle is practically unavoidable.

Within the general digital control theory, limit cycles have been extensively studied, with
different degrees of detail and complexity. In power electronics and, more precisely, in the area
of dc–dc converter applications, several fundamental papers on quantization resolution and
limit cycling have been published, like, for example [4, 5] and others cited therein. Without
entering too much into this fairly complex topic, we would now like to review the fundamental
conditions for the elimination of limit cycles. It is worth clarifying, right from the start, that
the conditions reported hereafter are necessary, but not sufficient, for the elimination of limit



44 DIGITAL CONTROL IN POWER ELECTRONICS

a)

Power converter

x(t)

A/D

x refDigital
regulator

DPWM

vin

io

+

_

x (k)

d(k)

Gate signal

x(k)

qADC

qPWM

Power converter

x(t)

A/D

x refDigital
regulator

DPWM

vin

io

+

_

x (k)x (k)ε
d(k)d(k)

Gate signal

x(k)

qADC

qPWM b)

-qADC/2

+qADC/2

xref

0 0 bit
error bin

+1 LSB
error bin

-1 LSB
error bin

ADC 
levels

DPWM
levels

x

Max(qDPWM, KI∑qADC)

-qADC/2

+qADC/2

xref

0 0 bit
error bin

+1 LSB
error bin

-1 LSB
error bin

ADC 
levels

DPWM
levels

x

Max(qDPWM, KI
.qADC)

FIGURE 3.6: (a) Digitally controlled power converter with ADC and DPWM quantization; (b) quan-
tization of state variable x(t) and effects of DPWM quantization.

cycle oscillations. Therefore, the actual presence and amplitude of LCOs are usually checked
by means of time-domain simulations. This may be a time-consuming investigation, since the
presence of LCOs strongly depends on the converter operating point, e.g., on the load current
and input voltage levels. In some cases, the system does not show LCOs, except for a very small
set of output current values. In addition, a limit cycle can sometimes be triggered only by some
particular transients, having a very particular amplitude. It is therefore not so easy to ensure the
actual elimination of LCOs.

However, in order to review the fundamental conditions for the elimination of LCOs, let
us consider the digitally controlled power converter shown in Fig. 3.6(a), where we assume that
the dominant quantization effects derive from the ADC and the DPWM, while the rounding
effects in the control algorithm are neglected. As a matter of fact, the fixed-point arithmetic
and the coefficient round-off may play a relevant role in the accuracy of the controller frequency
response definition and in the amplification of quantization noise. Nevertheless, a practical
design approach is often based on the assumption of infinite controller resolution and on the
verification a posteriori by means of time-domain simulations and experiments.

The first condition is to ensure that the variation of one DPWM level, i.e., 1 LSB of
the duty-cycle digital representation, here denoted as qDPWM, does not give a variation of the
controlled output variable x(t), in steady-state conditions, greater that the quantization level
of x(t), here denoted as qADC. Thus, if we define as G(s ) the transfer function between the
duty-cycle, d , and the controlled variable, x(t), the first necessary condition for the elimination
of LCOs is

qDPWM Gdc < qADC, (3.5)
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where Gdc is the steady-state gain (i.e., Gdc = G( j0)). The condition (3.5) indicates that the
effect on variable x of the DPWM quantization step, determined by the converter steady state
gain Gdc , must be smaller than the ADC quantization step. It is worth noting that this reasoning
applies to the control of dc quantities, while the analysis, and even the interpretation, of limit
cycles in the presence of time-varying references (as in dc/ac converters) may be slightly different.

The second condition is the presence of an integral action in the controller. This condition
has been formally demonstrated in [5]. However, its motivation can be explained considering
that, if only a proportional term (or a proportional derivative term) is included in the adopted
controller, a minimum quantized error on the controlled variable x(t) determines a variation
on the average converter output voltage that is equal to Gdc · KP · qADC (even considering the
quantization of the DPWM to be infinite). Since Gdc · KP is usually much greater than 1,
this variation is much greater than qADC and, consequently, condition (3.5) is not satisfied.
Therefore, in order to comply with (3.5), a lower amplification of the minimum quantized
error on the input variable must be ensured. This always happens when an integral action is
included in the control algorithm. In that case, the integral gain induces a smaller quantization
effect on the DPWM, since the minimum variation of the duty-cycle, due to the minimum
quantized error on x(t), is now equal to KI · qADC, with KI normally much smaller than KP.
This guarantees that (3.5) is typically satisfied. Of course, in addition to that, the following
condition has to be satisfied as well,

KIGdc < 1, (3.6)

which actually imposes an upper limit to KI. The simultaneous verification of conditions (3.5),
where we can now define the DPWM resolution as the maximum between its physical, hardware
quantization and what we have called the induced quantization, determined by the integral term,
and (3.6), is necessary to make the elimination of LCOs theoretically possible. A schematic
representation of these considerations is also given in Fig. 3.5(b). However, even if the two
conditions above are satisfied, limit cycle oscillations may still be present, essentially because of
the effect of the quantizer nonlinearity on the feedback loop.

This possible instability may be analyzed using describing function techniques, including
the ADC quantization and possibly the DPWM’s one. Thus, the third condition for LCO
elimination is that the closed loop system is stable from the describing function’s standpoint.
Unfortunately, the describing function approach is a valid approximation only in the case of
limit cycle oscillations that are well approximated by sinusoidal waveforms.

In conclusion, we can say that the analytical prediction of the occurrence of limit cycles,
of their amplitude, and their frequency is a very complicated problem. In any case, the use of
simulation is highly recommended, since the compliance with the above three conditions, as
we explained, does not guarantee the absence of LCOs. However, it is important to underline
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that, even if a limit cycle is detected, a proper design of the controller and the signal acquisition
path can generally bring its amplitude and frequency to practically acceptable levels.

3.2 BASIC DIGITAL CURRENT CONTROL IMPLEMENTATIONS
In this section, we present the basic implementations of the digital current controller for the VSI
depicted in Fig. 3.1. We will discuss different control algorithms and the related design criteria,
with the intention of highlighting the merits and the limitations of each solution. The discussion
will refer to an ideal controller implementation, where the above-mentioned quantization effects
can be considered negligible. Instead, we will focus our attention on the performance allowed
by the different solutions and on the impact of the digital controller implementation on the
dynamic response of the converter, considering, in particular, figures of merit like the response
delay to step changes in the current reference, or the residual tracking error in the presence of
sinusoidal reference current signals. Throughout the discussion, we will refer to the converter
parameters that we have already taken into account in Section 2.3.1, where we presented the
analog controller implementation, and that are reported in Table 2.1.

3.2.1 The Proportional Integral Controller: Overview
The first digital controller we discuss is the proportional integral, or PI, controller. In the last
part of Chapter 2, we have described in detail a possible analog implementation of this solution.
We now move to a digital implementation observing that, in general, it can be quite convenient
to derive a digital controller from an existing analog design. This procedure, which is called
controller discretization, has the advantage of requiring only a minimal knowledge of digital
control theory to be successfully applied. All that is needed is a satisfactory analog controller
design and the application of one of the several possible discretization methods to turn the analog
controller into a digital one. As we will see in the following, although generally satisfactory,
the application of this method implies some loss of precision, as compared to a direct digital
design, mainly due to the approximations involved in the discretization process itself and in the
equivalent continuous time representation of delays.

Referring to Fig. 3.7, we can see the block diagram of the control loop. As can be seen,
it replicates the organization of the block diagram of Fig. 2.10, with the remarkable difference
that some of the blocks are now discrete time blocks. In particular, we can see how the controller
and modulator blocks are now inside the digital domain, the shaded area, that represents a
microcontroller or DSP board. The inverter and transducer models are instead exactly equal
to those of Fig. 2.10 and, as such, continuous time models. The link between the two time
domains is represented by the ideal sampler at the input of the controller and by the digital pulse
width modulator, which generates the controller output and, as we have explained, inherently
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FIGURE 3.7: Block diagram of the digital current control loop with PI regulator.

implements the interpolator, or holder, function. All these characteristics imply that we are
actually dealing with a sampled data dynamic system.

For the reasons we previously explained talking about synchronization, we assume that
the controller operation is clocked by the DPWM, i.e., a new iteration of the control algorithm
is started as soon as a modulation period begins. We also assume, for simplicity, that the single
update mode of operation is adopted, so that, during each modulation period, a single new value
of the controller output is computed. The computation is based on the current sample, acquired
at the start of the period and indicated by I S

O (k). Since the controller operation proceeds at time
steps that are multiple of TS, the modulation and sampling period, in all the controller signals
we simply denote with k the instant k · TS from the origin of time. Accordingly, we say that,
at the kth modulation period, the output of the controller, i.e., the digital modulating signal, is
m(k). Please note that, although we keep identifying the output of the controller by m, as in
the analog case, this must no longer be considered an analog signal, but rather a sequence of
binary codes, i.e., a quantized discrete time signal. Of course, the same holds for each of the
other controller internal signals, like IOREF and I S

O.
It is worth noting that, in order to make Fig. 3.7 more realistic, we will modify the static

gains of the modulator and of the feedback path with respect to the analog design example of
Fig. 2.10. Indeed, in a digital implementation, the modulator static gain is represented by the
numerical scale factor that turns the binary code m(k) in the corresponding duty-cycle d (t).
In general, this depends on the way variables are normalized in the control algorithm. It is
possible to verify that, as soon as the normalization of variables is such that m(k) is coded as a
fractional binary number, i.e., the maximum binary value of m is made equivalent to unity, the
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modulator static gain is also unity, i.e., m(k) directly represents the duty-cycle, without further
scale factors. The fractional normalization hypothesis also explains the presence of the ADC
gain at the input of the digital controller, meaning that a full scale input value of the ADC is
normalized to unity as well. Under these assumptions and without loss of generality, we will
assume the DPWM static gain to be equal to unity. If a different normalization criterion is
adopted, the modulator static gain will have to be adjusted accordingly.

3.2.2 Simplified Dynamic Model of Delays
As briefly outlined above, the application of discretization techniques requires the designer to
determine an equivalent continuous time model of his or her sampled data system, to use it in
the design of a continuous time controller stabilizing the feedback loop and, finally, to turn the
continuous time controller into an equivalent discrete time one. Therefore, first of all, we need
to discuss the derivation of an equivalent, continuous time model for the system represented in
Fig. 3.7.

The typical textbook approach [2, 3] to sampled data dynamic systems control normally
requires us to properly model, in the continuous time domain, the discrete time system included
between the ideal sampler located at the controller input and the output interpolator. As we
have explained in Section 3.1.1, the typical way to do this is by considering a suitable model
of the interpolator, e.g., some kind of holder, and, after that finding an equivalent continuous
time representation for the cascade connection of the ideal sampler and the holder, which is
called a sample and hold. Please note that this method, schematically illustrated by Fig. 3.8,
is actually what we have already used in Chapter 2, modeling the different types of DPWM.
Once the sample and hold is modeled, the designer can operate the controller synthesis in the
continuous time domain, assuming that once converted back into a discrete time equivalent
and inserted between the sampler and the interpolator in the original sampled data system,
the controller will maintain the closed loop properties determined by the continuous time
design.
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FIGURE 3.8: Procedure to define the continuous time equivalent of the digital current control loop.
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This is what we have to do with the sampled data system of Fig. 3.7, with a significant
difference. The difference lies in the fact that, in this case, the function of the interpolator is
inherent to the DPWM, because that is the block where the conversion from the digital to
the analog domain takes place. This means that once the holder effect is properly modeled in
the DPWM, the conversion of the sampled data system into an equivalent, continuous time
one will be complete. This may seem a minor detail, but in this difference lies the key for the
correct interpretation of the system in Fig. 3.7 as a sampled data system. In Chapter 2, we have
described several continuous time equivalent models for the DPWM. Considering, for example,
model (2.7), after minor rearrangements and assuming, as we explained above, c PK = 1, we get
the following expression,

DPWM(s ) = 1
2

(
e−s (1−D) TS

2 + e−s (1+D) TS
2

)
= e−s TS

2 cos
(

ω
TS

2
D
)

∼= e−s TS
2 , (3.7)

which, as can be seen, shows the equivalence of the considered DPWM to a half modula-
tion period delay, cascaded to a frequency-dependent again. Considering the typical current
controller bandwidth to be limited well below the modulation frequency, 1/TS, the gain term
can actually be approximated by unity, independently of the duty-cycle D, so that the last part
of (3.7) holds. In the above assumptions, (3.7) shows that we can quite accurately model the
DPWM as a pure, half modulation period delay. Please note that this exactly coincides with
the continuous time model of the zero-order hold usually adopted in a sampled data controller
design. Of course, if a different DPWM model were considered, the result (3.7) would represent
a coarser approximation, but could still be used as a simplified representation of the holder delay
effect. Considering now the first-order Padé approximation of (3.7), a rational, continuous time
transfer function can be obtained,

e−s TS
2 ∼=

1 − s
TS

4

1 + s
TS

4

, (3.8)

where TS is, of course, the sampling period. The usefulness of (3.8) is that a rational transfer
function is clearly easier to deal with than the exponential function. We have actually already
met (3.8) in Chapter 2, Fig. 2.10, where it was used, basically under the same assumptions, to
approximately model the DPWM delay in an analog regulator design example.

We are now ready to consider the continuous time equivalent of our sampled data system.
This is shown in Fig. 3.9. As can be seen, we have obtained exactly the same model of Fig. 2.10,
with the only difference that the static gain of the modulator is now considered equal to 1 and
that there is an additional gain in the feedback path. To simplify the following developments
of this result, we assume FSR = c PK, so that the open loop static gain of Fig. 3.9 and that



50 DIGITAL CONTROL IN POWER ELECTRONICS

s

K
K I

P +  2VDC 

S

SS

R

L
s1

1.
R

1

+
 

IO IOREF 

GTI 

PI controller Static gain  

4

T
s1

4

T
s1

s

s

+

–

 

Delay effect (Padé
approximation) 

d m 

Inverter gain Load admittance 

DPWM model   

Current transducer 

( )sG  

+ - 
1 

ADC gain 

FSR

1
 

FIGURE 3.9: Block diagram of the continuous time equivalent of the digital current control loop.

of Fig. 2.10 are identical. Of course, in general, the two loop gains will have a different dc
value, which will require some straightforward adjustment of the controller parameters. Under
our assumption instead, the analog PI controller we have designed in Chapter 2 represents a
satisfactory stabilizing controller also for the loop of Fig. 3.9.

Therefore, we are now ready to take the last step toward the design of the digital PI
current controller. All we have to do is to apply a suitable discretization method to the analog
controller we already possess. The way this can be done is the subject of next section.

3.2.3 The Proportional Integral Controller: Discretization Strategies
According to digital control theory, the application of any discretization method always implies
a loss of performance with respect to a purely analog control implementation. This is also true
for our case. Indeed, if a analog current controller were designed for the system of Fig. 3.7, since
the delay effect of the analog PWM is negligible, the controller bandwidth could be higher than
that we can achieve once a digital modulator, which presents a higher delay, is used.

In Chapter 2 we have chosen to design the analog PI controller considering a digital
PWM modulator and modeling its delay exactly as in Fig. 3.9. That choice, together with
the “educated” choice of the ADC FSR value that was done in the previous section, allowed
us to find a controller that, although not ideal for the analog implementation, is now ready
for discretization without further adjustments. From a textbook’s standpoint, this offers two
advantages: to keep the presentation more compact and to allow, in the end, the comparison of
two virtually identical controllers, analog and digital, and thus putting into evidence the impact
of discretization on the final performance. However, note that in the general case the analog
design would have to be started from scratch, based on the equivalent model of Fig. 3.8.

There are actually several possible discretization strategies, some based on the invariance of
the dynamic response to particular signals (steps, ramps, etc.) and the others based on numerical
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FIGURE 3.10: (a) Euler integration method (forward and backward). (b) Trapezoidal integration
method.

integration methods. The latter are those we will consider now. The basic concept behind them
is very simple: we want to replace the continuous time computation of integrals with some
form of numerical approximation. The two basic methods that can be applied for this purpose
are known as the Euler integration and the trapezoidal integration method. The principle is
illustrated in Fig. 3.10.

As can be seen, the area under the curve is approximated as the sum of rectangu-
lar or trapezoidal areas. The Euler integration method can actually be implemented in two
ways, known as forward and backward Euler integration, the meaning being obvious from
Fig. 3.10(a). Writing the rule to calculate the area as a recursive function of the signal samples,
applying Z-transform to this area function, and imposing the equivalence with the Laplace
transform integral operator, gives a direct transformation from the Laplace transform indepen-
dent variable s to the Z-transform independent variable z.

Table 3.1 shows the transformations that are obtained for the two discretization methods,
where the two possible versions of the Euler integration method are considered. These are called
Z-forms. The practical meaning of each Z-form is as follows: the substitution of the s variable
in the controller transfer function with the indicated function of the z variable determines

TABLE 3.1: Discretization Methods

METHOD Z-FORM 3% DISTORTION LIMIT

Backward Euler s = z−1
z·TS

fS
f > 20

Forward Euler s = z−1
TS

fS
f > 20

Trapezoidal (Tustin) s = 2
TS

z−1
z+1

fS
f > 10
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Aside 3. Discretization of the PI Current Controller

In Aside 2, we have determined the proportional and integral gains of an analog PI cur-
rent controller. These were KP = 6.274 and KI = 1.8 × 104 (rad s−1). The corresponding
controller transfer function is given by

PI(s ) = KI

1 + s · KP

KI

s
. (A3.1)

We proceed now to the controller discretization, considering, at first, the Euler integration
method in the backward version. Substituting the s variable with the expression indicated in
the first row of Table 3.1, we find

PI(z) = KI

1 + z − 1
z · TS

· KP

KI
z − 1
z · TS

= (KP + KI · TS) · z − KP

z − 1
= KP + KI · TS · z

z − 1
. (A3.2)

As can be seen, we have obtained a new rational transfer function that can be simplified to
give the discrete time implementation of the PI controller. The block diagram corresponding
to the last expression in (A3.2) is shown in Fig. A3.1, which represents the parallel realization
of the discrete time regulator, followed by a possible, very simple, model of the calculation
delay.

KP
 

+ m(k) 

KITS
 

+

I(k)ε

z-1

+

+

mP(k) 

mI(k) 
z-1

m(k-1)

calculation delay

FIGURE A3.1: Block diagram representation of the digital PI controller.

Recalling the basic Z-transform properties, we can immediately write down the control
algorithm that may be used to implement the PI regulator in our microcontroller or DSP
unit. This is as follows,{

mI(k) = KI · TS · εI(k) + mI(k − 1)
m(k) = mP(k) + mI(k) = KP · εI(k) + mI(k),

(A3.3)

where εI (k) represents the current error at instant kTS. Please note that Fig. A3.1 actually
represents a more detailed description of the digital PI controller depicted also in Fig. 3.7.
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Similarly, we can apply the trapezoidal integration based Z-form, also known as Tustin
transform. Following the same procedure above, it is easy to derive the control algorithm
that translates the discretized PI controller. We find⎧⎨

⎩mI(k) = KI · TS · εI(k) + εI(k − 1)
2

+ mI(k − 1)

m(k) = mP(k) + mI(k) = KP · εI(k) + mI(k).
(A3.4)

As can be seen, the structure of (A3.4) is similar to that of (A3.3); the only difference being
determined by the computation of the integral part that is not based on a single current error
value, but rather on the moving average of the two most recent current error samples.

This difference is responsible for the lower frequency response distortion of the Tustin
transform. It is worth noting that the proportional and integral gains for the two different
versions of the discretized PI controller are exactly the same. As can be seen, in both cases
we find that the proportional gain for the digital controller is exactly equal to that of the
analog controller, while the digital integral gain can be obtained simply by multiplying the
continuous time integral gain and the sampling period. Please note that also the application
of prewarping does not change much the values of the controller gains; especially when a
relatively high ratio between the sampling frequency and the desired crossover frequency is
possible. This is also confirmed by the Bode plots, shown in Fig. A3.2, that refer to each of
the different PI controllers we have considered so far, i.e., the original continuous time one
and of each of the three discretized versions (Euler, Tustin, and prewarped).
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FIGURE A3.2: Bode plots of the different PI realizations.
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As can be seen, with our design parameters and sampling frequency, the plots are practically
undistinguishable.

In summary, we have seen that, given a suitably designed analog PI regulator, the appli-
cation of any of the considered discretization strategies simply requires the computation of
the digital PI gains, as in the following,{

KI dig = KI · TS

KP dig = KP,
(A3.5)

and the implementation of the proper control algorithm (A3.3) or (A3.4).
The last issue we need to discuss is the role of the calculation delay model that appears

in Fig. A3.1 (dotted z−1 block). If the unit delay block is added to the controller block
diagram, it becomes possible to evaluate the effect of the calculation delay on the control
performance and the closed loop system stability. This can be done using any kind of system
modeling and simulation software. Of course, the duration of the calculation delay is, in
this case, supposed to be equal to one sampling period, as a worst-case approximation.
More important, the design of the original analog PI controller was performed neglecting the
calculation delay, so it is likely that its inclusion in the digital controller model, at the time of
verification, will significantly affect the dynamic performance. To compensate that, the analog
design should be corrected considering an equivalent control loop delay equal to (3/2)TS

in (3.8).

the transformation of the continuous time controller into an equivalent discrete time one, the
equivalence being in the sense of the integral approximation explained above.

Since the numerical integration methods imply a certain degree of approximation, if we
compare the frequency response of the controller before and after discretization, some degree
of distortion, also known as frequency warping effect, can always be observed. Table 3.1 also
shows the condition that has to be satisfied to make the distortion lower than 3% at a given
frequency f . The condition is expressed as a limit for the ratio between the sampling frequency
fS = 1/TS and the frequency of interest, f . As can be seen, the trapezoidal integration method,
which generates the so-called Tustin Z-form, is more precise than the Euler method, and as
such guarantees a smaller distortion at each frequency or, equivalently, a higher 3% distortion
limit, which is as high as one tenth of the sampling frequency. Ideally, it is also possible to
prewarp the controller transfer function so as to compensate the frequency distortion induced
by the discretization method and get an exact phase and amplitude match of the continuous
time and discrete time controllers at one given frequency, which is normally the desired crossover
frequency.
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FIGURE 3.11: Simulation of the VSI with the controller designed according to the procedure reported
in Aside 3. The depicted variable is the VSI output current IO. (a) Controller response to a step reference
amplitude change. (b) Details of the previous figure. It is possible to see that no calculation delay effect
has been included in the simulation.

However, this method implies some more involved calculations and is therefore easily
applicable only if we can use some calculation software implementing the discretization tech-
niques. As we show in Aside 3, in the typical application case, the difference in the controller
frequency response we can get is usually small, so that the application of discretization methods
more complex that the Euler one is seldom motivated, at least for the PI controller.

To conclude the discussion of discretization techniques, we now present the results of the
simulation of our VSI with the digital controller obtained by following the procedure outlined
in Aside 3 and implementing the algorithm described by (A3.3). These are shown in Fig. 3.11.

It is interesting to compare these results with those reported in Fig. 2.11. As can be seen,
there is very little difference in the achieved performance. Watching very carefully, it is however
possible to note a slight increase in the phase shift between the output current and its reference,
a consequence of the slightly lower bandwidth achieved by the digital controller (a frequency
warping effect).

3.2.4 Effects of the Computation Delay
In the above discussion, we have shown how the delay effect associated with the DPWM
operation can be taken care of. An additional complication we have to deal with is represented
by the fact that the block diagram of Fig. 3.7 actually hides a second, independent source of
delay: this is the control algorithm computation delay, i.e., the time required by the processor
to compute a new m value, given the input variable sample. Although digital signal processors
and microcontrollers are getting faster and faster, in practice the computation time of a digital
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current controller always represents a significant fraction of the modulation period, ranging
typically from 10% to 40% of it. A direct consequence of this hardware limitation is that, in
general, we cannot compute the input to the modulator during the same modulation period
when it has to be applied. In other words, the modulator input, in any given modulation period,
must have been computed during the previous control algorithm iteration. Dynamically, this
means that the control algorithm actually determines an additional one modulation period
delay.

One could consider this analysis to be somewhat pessimistic, because powerful microcon-
trollers and DSPs are available today, which allow the computation of a PID routine in much less
than a microsecond. However, it is important to keep in mind that, in industrial applications,
the cost factor is fundamental: cost optimization normally requires the use of the minimum
hardware that can fulfill a given task. The availability of hardware resources in excess, with
respect to what is strictly needed, simply identifies a poor system design, where little attention
has been paid to the cost factor. Therefore, the digital control designer will struggle to fit his
or her control routine to a minimum complexity microcontroller much more often than he or
she will experience the opposite situation, where a high-speed DSP will be available just for the
implementation of a digital PI or PID controller.

The conventional approach to tackle the problem consists in assuming that a whole
control period is dedicated to computations, as shown in Aside 3, Fig. A3.1. In this case, in
order to get from the digital controller a satisfactory performance the calculation delay effect
has to be included from the beginning in the analog controller design. Practically, this can
be done by increasing the delay effect represented by the Padé approximation of Fig. 2.10
and Fig. 3.9 by TS. After that, the procedure described in Aside 3 for the controller synthesis
through discretization can be reapplied. It is important to underline once more that, if the analog
controller is not redesigned and a significant calculation delay is associated with the implemented
algorithm, the achieved performance can be much less than satisfactory. An example of this
situation is shown in Fig. 3.12(a), where a calculation delay equal to one modulation period is
considered. Note how the step response tends to be underdamped. In the other case instead,
as is shown in Fig. 3.12(b), the dynamic response of the redesigned controller is smoother,
but a significant reduction of its speed can be observed. Please note that the result has been
obtained by reducing the crossover frequency to fS/15, while keeping the same phase margin
of the original design. The previous example shows that when the maximum performance is
required, this conventional approach may be excessively conservative. Penalizing the controller
bandwidth to cope with the computation delay, the synthesis procedure will unavoidably lead
to a worse performance, with respect to conventional analog controllers. This is the reason why,
in some cases, a different modeling of the digital controller can be considered that takes into
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FIGURE 3.12: Simulation of the VSI with the digital PI controller including the calculation delay. (a)
Details of the controller response to a step reference amplitude change without redesign: undershoot and
oscillating response. (b) Details of controller response with redesign: reduced undershoot, reduced speed of
response, increase of phase shift.

account the exact duration of the computation delay and so, by using modified Z-transform,
exactly models the duty-cycle update instant within the modulation period. In this way, the
penalization of the digital controller with respect to the analog one can be minimized and a
significant performance improvement, with respect to the case of Fig. 3.12(b), can be achieved.
This will be the subject of Section 3.2.6.

3.2.5 Derivation of a Discrete Time Domain Converter Dynamic Model
What we have described so far is a very simple digital controller design approach. It is based
on the transformation of the sampled data system into a continuous time equivalent, which
is used to design the regulator with the well-known continuous time design techniques. The
symmetrical approach is also possible. In this case, the sampled data system is transformed into
a discrete time equivalent, which can be used to design the controller directly in the discrete
time domain. We will now present a short review of this strategy.

Discrete time models for power electronic circuits have been widely discussed in the past
(see, for example, [6–8]). The detailed and precise discrete time converter model is generally
based on the integration of the linear and time-invariant state space equations, associated with
each switch configuration (i.e., turn-on and turn-off ). Then, the state variable time evolutions,
obtained separately for each topological or switch state, are linked to one another exploiting
the continuity of the state variable, i.e., imposing the final state of one configuration to be the



58 DIGITAL CONTROL IN POWER ELECTRONICS

initial state of the next. This approach, which requires the use of exponential matrixes, leads to a
general discrete time state space model and precisely represents the system dynamic behavior in
the discrete time domain. Therefore, in principle, it represents a very good modeling approach
for digitally controlled power electronic circuits. Nevertheless, it is not very commonly used,
mainly for the following two reasons: (i) the obtained discrete time model depends on the
particular type of modulator adopted, as the sequence of state variable integrations, one for each
topological state, depends on the modulator mode of operation (leading edge, trailing edge,
etc.); (ii) the exponential matrix computation is relatively complex and, therefore, not always
practical for the design of power electronic circuit controllers.

A more direct, equivalent, approach to discrete time converter modeling is described in
Figs. 3.13 and 3.14(a), where the PWM modulator is represented using the frequency domain
model, PWM(s ), derived in the previous chapter, G(s ), the converter transfer function, is
obtained from the continuous time converter small signal model, and xs (t) is the sampled
output variable, which has to be controlled by the digital algorithm. To account for the time
required by the AD conversion and by the control algorithm computation in the DSP (or μC),
a time delay Td is cascaded to the controller transfer function Reg(z). More explicitly, in a
uniformly sampled PWM, time Td represents the delay between the output variable sampling
and the duty-cycle update instants. When this is equal to one modulation period, a simple z−1

block could be substituted in the control loop.

Aside 4. PI Current Controller with Integral Anti-wind-up

In Aside 3, we have completed the design of a digital PI current controller. This Aside is
dedicated to a typical implementation issue, i.e., the control of the integral part wind-up.
This phenomenon can take place any time the PI controller input signal, i.e., the regulation
error, is different from zero for relatively large amounts of time. This typically happens
in the presence of large reference amplitude variations or other transients, causing inverter
saturation. The problem is determined by the fact that, if we do not take any countermeasure,
the integral part of the controller will be accumulating the integral of the error for the entire
transient duration. Therefore, when the new set-point is reached, the integral controller
will be very far from the steady state and a transient will be generated on the controller
variable, which typically has the form of an overshoot. It is fundamental to underline that
this overshoot is not related to the small signal stability of the system. Even if the phase
margin is high enough, the transient will always be generated, as it is just due to the way the
integral controller reacts to converter saturation. An example of this problem is shown in
Fig. A4.1(a).
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FIGURE A4.1: Dynamic behavior of the PI controller during saturation: (a) no anti-wind-up;
(b) anti-wind-up.

The solution to this problem is based on the dynamic limitation of the integral controller
output during transients. Transients can be detected monitoring the output of the controller
proportional part: in a basic implementation, any time this is higher than a given limit,
the output of the integral part of the controller can be set to zero. Integration is resumed
only when the regulated variable is again close to its set-point, i.e., when the output of the
proportional part gets below the specified limit. More sophisticated implementations of this
concept are also possible, where the limitation of the integral part is done gradually, for
example keeping the sum of the proportional and integral outputs in any case lower than or
equal to a predefined limit. In this case, shown in Fig. A4.2, at each control iteration, a new
limit for the integral part is computed and, if needed, the integral output is clamped.
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FIGURE A4.2: Block diagram representation of the digital PI controller with anti-wind-up action.

This implementation, of course, requires a slightly higher computational effort, which
amounts to the determination of the following quantity, where mMAX is the controller output
limit:

|LI(k)| = mMAX − |KpεI(k)|. (A4.1)

However, the result can be quite effective, as shown in Fig. A4.1(b). Please note that similar
provisions can be as well adopted to limit the state variables of any other type of digital
regulator.
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FIGURE 3.13: Model of the control loop for digitally controlled converters.

Before continuing with this discussion, we have to clarify two key points, fundamental
to establish a correct relationship between our modeling approach and standard digital control
theory. First of all, the zero-order hold (ZOH) function that, when cascaded to an ideal sampler,
models the conversion from sampled time variables into continuous time variables is, in our
case, internal to the PWM model and, therefore, does not appear right after the sampler. As a
consequence, recalling that an ideal sampler has, by itself, a gain equal to 1/TS [1], if we want
to correctly represent the transfer function between the sampled time input variable and the
continuous time output variable of the modulator, a gain equal to TS has to be added to the
modulator transfer function PWM(s ). Having clarified this, the discrete time transfer function
GT(z), which exactly represents the discrete time state variable dynamic equations is given by

GT(z) = Z[e−s Td TS PWM(s )G(s )]. (3.9)

PWM(s) G(s)e-sTd
xs(k)ms

r(k)

GT(z)

ZOH G(s)z-1
xs(k)ms

r(k)

GT(z)

a)

b)

T

GT(z)

FIGURE 3.14: Equivalent dynamic model of computation delay, the PWM transfer function, the con-
verter, and the sampler: (a) general form, (b) simplified representation, where the PWM is approximated
as a zero-order hold (ZOH) and the control delay is equal to one modulation period.
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This z-domain approach is very powerful: indeed it is capable of correctly quantifying the
difference in the converter dynamics determined by the different uniformly sampled modulator
implementations (trailing edge, leading edge, triangular carrier modulation, etc.), as it takes
into account the exact duty-cycle update instant. Nevertheless, there are two strong motivations
to simplify the discretization process and the evaluation of (3.9) in the case of triangular carrier
modulation: (i) the control delay is usually equal to one modulation period, and a simple z−1

block can be used to represent it; (ii) the PWM modulation transfer function TS · PWM(s ) looks
very much like that of a zero-order hold, as (3.7) clearly shows. Therefore, an approximated,
but more intuitive, ZOH discretization method can be used to obtain the open loop discrete
time transfer function. This is given by

GT(z) = z−1 Z[H(s )G(s )], (3.10)

where H(s ) = (1 − e−s TS )/s is the ZOH transfer function. Moreover, assuming that G(s ) is
well approximated by a pure integrator, as is the case of our current control example with RS = 0,
i.e., G(s ) = 2 VDC/s LS, and assuming Td = TS, there is no difference between (3.9) and (3.10).
In fact, rewriting (3.10) we find that

GT(z) = z−1 Z
[

1 − e−s TS

s
2 VDC

s LS

]
= 2 VDC

LS
z−1(1 − z−1)Z

[
1
s 2

]
= 2 VDC TS

LS

1
z(z − 1)

,

(3.11)

while, rewriting (3.9), we get

GT(z) = Z
[

e−s TS TS PWM (s )
2 VDC

s LS

]
= 2 VDCTS

LS
z−1 Z

[
PWM(s )

s

]
= 2 VDC TS

LS

1
z(z − 1)

,

(3.12)

where PWM(s ) is the transfer function given by (2.7), with c PK = 1. The equivalence between
the two approaches is easily justified if we consider that the output current variation only depends
on the integral of the inverter voltage, i.e., only on the average voltage value generated by the
PWM, and not on the particular allocation of the PWM pulse within the modulation period.

Following the same reasoning, the extension of the z-domain small signal model derivation
to the case of the multisampled system, described in Section 2.2.4, is straightforward,

GT(z) = Z[e−s Td
TS

N
PWM(s )G(s )], (3.13)

where the Z-transform is taken with a sampling period equal to TS/N. Model (3.12) can be
used for the direct discrete time design of the current controller, simply deciding the closed loop
poles allocation.
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3.2.6 Minimization of the Computation Delay
As previously described, one of the most important factors that limit the dynamic performance
of digitally controlled power converters is the computational delay between the sampling in-
stant and the duty-cycle update instant. We have previously described how, in order to avoid
antialiasing filters, a common practice is to sample the inductor current in the middle of either
the turn-on or the turn-off times, thus ensuring that its average value is automatically acquired.
However, this provision usually introduces a delay in the control loop, strongly limiting the
achievable bandwidth. The control delay can be reduced by half in the double update mode,
where the input variables are sampled both in the middle of turn-on and turn-off time and the
duty-cycle is updated twice in one switching period.

However, the increase of computational power of DSPs, microcontrollers, and FPGAs,
which are now able to complete the control algorithm computation in smaller and smaller
fractions of the switching period, makes possible the further reduction of the control delay. This
can be obtained shifting the current sampling instant toward the duty-cycle update instant,
leaving just enough time for the ADC to generate the new input sample and to the processor
for the control algorithm calculation.

The situation under investigation is depicted in Fig. 3.15, where Td is, once again, the time
required by AD conversion and calculations. Time TC is instead available for other noncritical
functions or external control loops. As can be seen, since Td � TS, with TS being the modulation
period, the sampling of the state variable x(t), i.e., in our case of the inductor current IO (t),
is delayed with respect to conventional controller organizations and shifted toward the PWM
update instant, as shown in Fig. 3.15. From the controller’s standpoint, this implies a reduction
of the feedback loop delay.

PWM carrier

PWM 
update

PWM
update

TC

x(t) 
sampling

driver signal
ton tofftoff

c(t) 

Td

FIGURE 3.15: Sampling of variable x(t) shifted toward the PWM update.
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In order to quantify the effectiveness of this reduction, an accurate discrete time model
is needed. To this purpose, we can consider the block diagram of Fig. 3.14(a), and replace the
PWM block with a zero-order hold (ZOH), which, as we have seen, represents a very good
approximation, especially in the case of triangular carrier waveform. Now, if the control delay
Td is a submultiple of the sampling period TS, the continuous system is easily convertible into a
discrete time model using conventional Z-transform and considering Td as the sampling period.
In our case, the delay Td is a generic fraction of sampling period TS and therefore, modified
Z-transform has to be used to correctly model the system. The basics of modified Z-transform
are briefly recalled hereafter. Let us define

p = 1 − Td

TS
(3.14)

where 0 ≤ p ≤ 1. If g (t) is the impulse response of G(s ), we denote, as we did before, the Z-
transform of the ideally sampled version of g (t) (i.e., Z[L−1[G(s )](k TS)]) simply as Z [G(s )],
with L−1 being the inverse of Laplace transform. Consequently, the discrete time model of the
continuous system of Fig. 3.7 can be expressed as

Z

⎡
⎣H(s ) G(s )︸ ︷︷ ︸

G1(s )

e−s pTS

⎤
⎦ =

∞∑
k=0

z−k g1(kTS − Td) = Zm [G1(s )] = G1(z, p) (3.15)

where g1(t) is the impulse response of G1(s ), and G1(z, p) (or Zm [G1(s )]) is the modified
Z-transform of G1(s ). In the particular case of the zero-order hold, H(s ) = (1 − e−s TS)/s and
(3.15) becomes

GT(z, p) = Z

⎡
⎢⎢⎣1 − e−s TS

s︸ ︷︷ ︸
H(s )

G(s )e−s pTS

⎤
⎥⎥⎦ = z − 1

z
Z

[
G(s )

s
e−s p TS

]
= z − 1

z
Zm

[
G(s )

s

]
.

(3.16)
The modified Z-Transform maintains the properties of the conventional Z-transform,

since it is simply defined as the Z-transform of a delayed signal; see (3.15). The results of the
modified Z-transform application to particular cases of interest are usually available in lookup
tables [9].

In our example case, the discrete time transfer function between the modulating signal
M(z), input of the DPWM, and the delayed inductor current IO(z) can be written as

IO(z)
M(z)

= 2 VDC TS

LS
· z p − (p − 1)

z(z − 1)
. (3.17)
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TABLE 3.2: Achievable Current Loop
Bandwidth BWi Versus pa

p 0 0.5 0.8

BWi fs/13.4 fs/9 fs/6.2
a Phase margin is 50◦ and the current
regulator is purely proportional.

It may be interesting to observe that in the usual case, where p = 0, i.e., the sampling
and computation delay amounts to one full modulation period, (3.17) reduces to

IO(z)
M(z)

= 2 VDCTS

LS
· 1

z(z − 1)
, (3.18)

which, as can be verified, is equal to (3.11) and (3.12). In order to quantify the advantages of
exactly modeling the delay, i.e., of considering p > 0, let us take into account, as a benchmark
parameter, the achievable current loop bandwidth. We assume, for simplicity, that the current
regulator is purely proportional and that the phase margin is kept constant, for example to
+50◦. To this purpose, we look for the frequency where (3.17) shows a −130◦ phase rotation,
and we define that as the achievable current loop bandwidth (BWi ). The results are reported in
Table 3.2. Please note how, simply by shifting the sampling instant toward the duty-cycle update
instant, a significant improvement in the achievable current loop bandwidth can be obtained.
It is also possible to note that only with p = 0 (sampling in the middle of turn-off time) or
p = 0.5 (sampling in the middle of turn-on time) the sampled current is the average inductor
current, while, for other values of p, some kind of algorithm is needed for the compensation
of the current ripple, possibly accounting for dead-time effects as well. For this reason, the
application of the concept here described to current control is fairly complicated, while it can
be much more convenient for the control of other system variables, where the switching ripple
is smaller. This can be the case, for example, of output voltage control in an Uninterruptible
Power Supply, a particular application of the VSI we will discuss in Chapter 5.

3.2.7 The Predictive Controller
We now move to a totally different control approach, describing the predictive, or dead-beat,
current control implementation [10, 11]. The basic organization of this controller is shown in
Fig. 3.16: it closely resembles the one shown in Fig. 3.7 with two major differences, the presence
of an additional input to the controller and the absence of the delay block modeling the sample
and hold process. The motivations for these differences will be given shortly.
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FIGURE 3.16: Block diagram of the dead-beat current control loop.

In principle, the dead-beat control strategy we are going to discuss is nothing but a
particular application case of discrete time dynamic state feedback and direct pole allocation,
and, as such, its formulation for our VSI model, as derived in Aside 1, can be obtained applying
standard digital control theory. However, this theoretical approach is not what we are going
to follow here. Instead, we will present a different derivation, completely equivalent to the
theoretical one, but closer to the physical converter and modulator operation. We will discuss
the equivalence of the two approaches in Aside 5, but we feel that the physical one is somewhat
easier to explain and better puts into evidence the merits and limitations of the predictive
controller. For this reason, we chose to begin our discussion exactly from the physical approach.

3.2.7.1 Derivation of the Predictive Controller
The reasoning behind the physical approach to predictive current control is quite simple and
can be explained referring to Fig. 3.17, which represents an average model of the VSI and its
load. At any given control iteration, we want to find the average inverter output voltage,V OC,
that can make the average inductor current, I O, reach its reference by the end of the modulation
period following the one when all the computations are performed. In other words, at instant
k · TS we perform the computation of the V OC value that, once generated by the inverter, during
the modulation period from (k + 1) · TS to (k + 2) · TS, will make the average current equal to
its reference at instant (k + 2) · TS. Please note that, doing so, the computation and modulation
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FIGURE 3.17: (a) Average equivalent circuit for the VSI of Fig. 3.1. (b) Average and instantaneous
idealized waveforms for the inverter of Fig. 3.1.

delays are inherently taken care of, and the controller dynamic response, as we are going to
show, turns out to be equivalent to a pure two modulation period delay.

Following this reasoning, the control equation can be easily derived. Examining
Fig. 3.17(a) the average inductor current at the instant (k + 1)TS is given by

I O(k + 1) = I O(k) + TS

LS
· [V OC (k) − ES (k)

]
, (3.19)

where resistance RS has been considered negligible, as it is often the case. Equation (3.19)
simply expresses the physical fact that the current variation in an inductor is proportional to the
integral of the applied inductor voltage. This voltage integral has been computed exploiting,
once again, the Euler numerical integration rule. In other words, we are here considering again
a zero-order hold discrete time equivalent of the dynamic system represented in Fig. 3.17(a).
Please note that, in (3.19) and according to Fig. 3.17(b), V OC (k) indicates the average inverter
voltage to be generated in the modulation period following the sampling instant k · TS, when
all calculations are performed.

In principle, from (3.19) it would be possible to compute the V OC (k) value required
to make I O(k + 1) equal to IOREF(k), thus achieving a one cycle delay dynamic response for
the closed loop controlled system. In practice, since the computation of voltage V OC (k) value
occupies part of the modulation period, it is not possible to guarantee that, in all cases, the
calculations will be over before the output voltage has to change its state from negative to
positive, instant indicated by Tlimit in Fig. 3.17(b). Please note that, in all cases when the
average voltage to be applied is strongly positive, instant Tlimit will be very close to instant k · TS,
thus leaving very little time for computations.
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The simplest way to solve these timing problems is to move the objective of the compu-
tation one step forward, i.e., instead of computing V OC (k), we will now find the expression of
V OC (k + 1). This will give us a whole modulation period to complete the calculations. Please
note that we followed exactly the same approach when we modeled the calculation delay for
the digital PI controller, considering it to be equal to one modulation period. Also similarly
to the case of the digital PI, more sophisticated modeling approaches, taking into account the
exact computation delay and duty-cycle update instant allocation within the modulation period
are indeed possible, but we will not consider them here. Therefore, rewriting (3.19) one step
forward, we get

I O(k + 2) = I O(k + 1) + TS

LS
· [V OC (k + 1) − ES (k + 1)

]
= I O(k) + TS

LS
· [V OC (k + 1) + V OC (k) − ES (k + 1) − ES (k)

]
, (3.20)

where I O(k + 1) has been replaced by its expression (3.19). Assuming now that the phase
voltage ES is a slowly varying signal, as it is often the case, whose bandwidth is much lower
than the modulation and sampling frequency, it is possible to consider ES (k + 1) ∼= ES (k),
thus obtaining the following dead-beat control equation,

V OC (k + 1) = −V OC (k) + LS

TS
· [I O(k + 2) − I O(k)

] + 2 · ES (k) , (3.21)

where I O(k + 2) can be replaced by IOREF(k), the desired set-point. Equation (3.21) can be
used to determine the duty-cycle, for the modulation period starting at instant (k + 1) · TS,
that will make the inductor current reach its reference at instant (k + 2) · TS, with a two mod-
ulation period delay. If this holds, and indeed it does, application of (3.21) makes the closed
loop system dynamic response equivalent to a pure delay, i.e., guarantees a dead-beat control
action.

As it is possible to observe, the application of (3.21) requires the phase voltage ES to
be measured every sampling period, so that, differently from the PI current controller, the
predictive controller, at least in this basic implementation, requires the sensing and analog to
digital conversion not only of the regulated variable, i.e., the output current, but also of the
phase voltage.

Another, less evident, point regarding (3.21) is that, in general, the set-point for the
average inverter output voltage it provides us with will have to be correctly scaled down, so as
to fit it to the digital pulse width modulator. The fitting is normally accomplished normalizing
the output of the controller to the inverter voltage gain. In addition to this, the control equation
has to be modified also to properly account for the transducer gains of both current and voltage
sensors. It is easy to verify that an equivalent control equation, taking into account the transducer



68 DIGITAL CONTROL IN POWER ELECTRONICS

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-15

-10

-5

0

5

10

15

9.8 9.85 9.9 9.95 10 10.05 10.1 10.15 10.2

x 10
-3

7

8

9

10

12

13

14
IOIO

11
[A][A]

[s]a) b)t [s] t

FIGURE 3.18: Simulation of the VSI with the predictive controller. The depicted variable is the VSI output
current IO. (a) Controller response to a step reference amplitude change. (b) Details of the previous figure.

gains and voltage normalization, is as follows,

m(k + 1) = −m(k) + LS

TS
· 1

2 · GTI · VDC
[I S

OREF(k) − I S
O(k)] + 2 · 1

2 · GTE · VDC
ES

S(k),

(3.22)
where m(k) is the modulating signal input of the digital PWM and all variables are now

internal variables, properly scaled down to fit to the microprocessor arithmetic unit. Please note
that (3.22) also assumes that the modulating signal is bipolar, ranging between plus and minus
one-half of the modulator full scale input. As we did for the digital PI, this is assumed to be
equal to unity, without any loss of generality. Under these assumptions, (3.22) can be turned
into a control algorithm, to be programmed in the microcontroller or DSP unit.

An example of the predictive controller dynamic performance is shown in Fig. 3.18. In
particular, Fig. 3.18(a) shows the reference tracking capability of the controller in the presence
of a step change in the current reference. A more detailed view of the transient is shown in
Fig. 3.18(b). It is interesting to compare this plot with Figs. 3.11 and 3.12. As can be seen,
in spite of the calculation delay, the dynamic response is faster than that obtained with the PI
controller and reference tracking is resumed almost exactly after only two modulation periods
from the first controller intervention.

A simple improvement of the presented control strategy makes it possible to derive an
estimation equation that allows us to save the measurement of the phase voltage ES. As in the
control equation’s case, the estimation equation can be derived by simple physical considerations,
basically referring to (3.19). Indeed, rewriting (3.19) one step backward we get

I O(k) − I O(k − 1) = TS

LS
· [V OC(k − 1) − ES(k − 1)], (3.23)
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from which we can extract an estimation of ES(k − 1). Simple manipulations of (3.23) yield

ÊS(k − 1) = V OC(k − 1) − LS

TS
· [I O(k) − I O(k − 1)]. (3.24)

Equation (3.24) represents the basic estimation equation for the predictive control of the
VSI output current. It is typically possible to improve the quality of the estimation by using
some form of interpolation or filtering that can remove possible estimator instabilities.

3.2.7.2 Robustness of the Predictive Controller
The predictive controller derivation assumes that Eq. (3.19) is a valid model of the VSI and its
load. Although this is a generally solid assumption, in certain conditions the validity of (3.19)
can be impaired. There can be at least two different reasons for this to happen, namely model
mismatches and parameter uncertainties.

Aside 5. Derivation of the Predictive Controller Through Dynamic State Feedback

The VSI represented in Fig. 3.1 can be described in the state space by the following set of
equations, {

ẋ = Ax + Bu
y = Cx + Du,

(A5.1)

which, as we recall from the discussion reported in Aside 1, can be used to relate average
inverter electrical variables. In this case x = [I O] is the state vector, u = [V OC, ES]T is the
input vector, y = [I O] is the output variable, and the state matrixes are

A = [−RS/LS], B = [1/LS, −1/LS], C = [1], D = [0, 0]. (A5.2)

It is possible to derive a zero-order hold discrete time equivalent of (A5.1) considering the
following system, {

x(k + 1) = �x(k) + 
u(k)
y(k) = Cx(k) + Du(k),

(A5.3)

where, by definition, � = eA·TS and 
 = (� − I) · A−1 · B. Computation of � and 
 yields

� = eA·TS = e− RS
LS

·TS
RS→0−−−−→ 1


 =
⎡
⎣−e− RS

LS
·TS − 1
RS

e− RS
LS

·TS − 1
RS

⎤
⎦ RS→0−−−−→

[
TS

LS
− TS

LS

]
,

(A5.4)

where both matrixes have been calculated for the limit condition where the RS value is
negligible. Of course, this approximation is not strictly necessary to perform the following
calculations and could be avoided. However, since we want to compare the results provided
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by the theoretical approach with those provided by the physical approach, we need to operate
under the same conditions, which motivates the assumption of a negligible RS value.

Given (A5.3), we can derive the predictive controller as a particular case of state feedback
and pole placement. In order to show that we may consider again (A5.3), rewriting the state
equations explicitly. We get the following result:

� :

⎧⎨
⎩ I O(k + 1) = I O(k) + TS

LS
· V OC(k) − TS

LS
· ES(k)

y(k) = I O(k).
(A5.5)

Please note that the first equation in (A5.5) is exactly equal to (3.19). It is easy to verify that
(A5.5) is exactly equivalent to the part of the following block diagram indicated by �. As can
be seen, the block diagram includes the feedback controller as well. This schematic represen-
tation puts into evidence some interesting features of the considered discrete time system. In
the first place, the diagram reveals how the ES input can be considered an exogenous distur-
bance, whose compensation can be obtained by adding a suitable signal, ideally the ES signal
itself, to the control input V OC. As we will see in the following, the computation delay will
make it impossible to get a perfect compensation of the disturbance, and, consequently, only
partial compensation will be achieved. In addition, the block diagram shows how the feed-
back controller is itself a dynamic system. Differently from what is often done in state feedback
applications, we are using here dynamic state feedback instead of a simple static feedback.
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FIGURE A5.1: Block diagram of the discrete time models for the VSI and the dead-beat controller.
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This is done to make the modeling of the computation delay more direct. In this case, referring
to the diagram, we can represent the controller by means of the following state equation,

V OC(k + 1) = K2 · V OC(k) + K1 · [IOREF(k) − I O(k)], (A5.6)

where, of course, the identity I O = y has been used. The interconnection of � and the
controller feedback generates a new, augmented, dynamic system, indicated by �A. This is
described by the following equations,

�A :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I O(k + 1) = I O(k) + TS

LS
· V OC(k) − TS

LS
· ES(k)

V OC(k + 1) = K2 · V OC(k) + K1 · [IOREF(k) − I O(k)] + K3 · ES(k)

y(k) = [1 0]·
[

I O(k)
V OC(k)

]
,

(A5.7)

which correspond to the state vector augmentation to xA = [I O V OC]T, to the new
input vector uA = [ES IOREF]T and to the approximated compensation of the exogenous
disturbance, governed by gain K3. The corresponding state matrixes are as follows:

�A =
⎡
⎣ 1

TS

LS
−K1 K2

⎤
⎦, 
A = [
A1

|
|
|
|

A2] =

⎡
⎣− TS

LS
0

K3 K1

⎤
⎦,

|
|
|
|
|
|
|
|
|
|

CA = [1 0], DA = [0 0].

(A5.8)
Based on (A5.8) it is possible to determine parameters K1, K2, and K3 to get the desired
pole allocation and disturbance compensation. It is easy to verify that choosing

K1 = LS

TS
, K2 = −1 (A5.9)

the eigenvalues of �A move to the origin of the complex plane. As is well known, this is a
sufficient condition to achieve a dead-beat closed loop response from the controlled system.
Alternatively, the position of poles on the complex plane can be chosen to achieve a different
closed loop behavior, for example one equivalent to that of a continuous time, first-order,
stable system, characterized by any desired time constant. Indeed, with the direct discrete
time design of the regulator, the designer has, in principle, complete freedom in choosing
the preferred pole allocation. It is possible to demonstrate that the allocation of poles in the
origin of the complex plane makes the closed loop system behavior very peculiar, bearing no
similarity with any continuous time system’s one. That is because the position of poles in the
continuous time domain corresponding to the origin of the complex plane in the discrete time
domain is minus infinity, which is not physically realizable, of course. In the discrete time
domain instead, the allocation in the origin is perfectly realizable and determines the typical
dead-beat closed loop behavior, i.e., the step response of the close loop system becomes equal
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to a linear combination of different order pure delays. In order to verify this property with
our example, we now compute the closed loop transfer function between input IOREF and
output I O. Applying standard state feedback theorems and after simple calculations, we find

I O

IOREF
(z) = CA · (zI − �A)−1 · 
A2 = 1

z2
, (A5.10)

which corresponds, as expected, to a dynamic response equivalent to a pure two modulation
period delay. Similarly, we can compute the closed loop transfer function from the
disturbance to the output. We find

I O

ES
(z) = CA · (zI − �A)−1 · 
A1 = 1

z2
· TS

LS
· (−z − 1 + K3). (A5.11)

As can be seen, there is no value of K3 that can guarantee a zero transfer function from
disturbance to output. This is due to the fact that the compensation term of the controller
equation (A5.7) is one step delayed with respect to the control output and, as such, is
only approximated. Under these conditions, the best we can do is to minimize the transfer
function (A5.11). It is easy to verify that the choice K3 = 2 achieves this minimization.
Rewriting (A5.11) in the time domain and imposing K3 = 2 we find

I O(k) = TS

LS
· [−ES(k − 1) + ES(k − 2)], (A5.12)

which, under the assumption of slowly varying ES, guarantees the minimum disturbance
effect of the output. Having determined the controller parameters K1, K2, and K3, we are
now ready to explicitly write the control equation, which turns out to be

V OC(k + 1) = −V OC(k) + LS

TS
· [IOREF(k) − I O(k)] + 2 · ES(k). (A5.13)

As can be seen, (A5.13) is equal to (3.21).
To complete this theoretical discussion of the predictive controller, we need to add a final

remark about the phase voltage estimation. The derivation presented here refers to the basic
predictive controller implementation, where the phase voltage ES is assumed to be measured.
If we want to consider the use of an output voltage estimator, additional care must be taken.
The estimation equation can be directly obtained from the state variable I O update equation
(A5.5). However, using the estimated voltage ÊS instead of the measured one in the control
equation determines an increase of the order of the system, because ÊS is a function of input
and state variable values. As a general rule, this makes the dead-beat properties and stability
of the controlled system more sensitive to model and parameter mismatches, reducing its
robustness.
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An example of the former type is represented by not properly modeled circuit components
(like RS) that, assumed to be negligible, turn out to be comparable with the other circuit
components. The effect of model mismatches is normally very serious: since the control equation
is based on a given system model, any deviation of the physical system from the model makes the
controller interaction with the physical system unpredictable in its effects. Minor mismatches
determine deviations from the expected dynamic performance, major ones can even determine
unstable or lightly damped closed loop responses.

Parameter uncertainties, instead, are typically determined by construction tolerances or
parameter value drifts, such as those due to varying physical or environmental operating condi-
tions (current, temperature). Their effect on the dynamic performance of the closed loop system
can be serious, ranging from different extents of performance degradation to system instability.

The formal analysis of model mismatches goes beyond the scope of our discussion, requir-
ing a solid background in system identification theory. Instead, we can briefly discuss the effect
of parameter uncertainty and provide an estimation of the predictive controller robustness to
parameter variations. Considering (3.22) we see that several parameters contribute to the defi-
nition of the algorithm coefficients, each of them being a potential source of mismatch. To give
an example of the analysis procedure we can apply to estimate the sensitivity of the controller to
the mismatch, we begin by referring, for simplicity, to (3.21), where the only parameter we need
to take into account is inductor LS. Of course, transducer gain or dc link voltage variations can
be treated similarly. We can easily model errors or variations on parameter LS distinguishing
the value used in the VSI model from that used in the predictive controller equation. In order
to do that we can rewrite (3.21) as follows,

V OC(k + 1) = −V OC(k) + LS ± �LS

TS
· [I O(k + 2) − I O(k)] + 2 · ES(k), (3.25)

where parameter LS has been replaced by LS ± �LS, thus putting into evidence the possible
presence of an error, �LS, implicitly defined as a positive quantity. The analysis of the impact
of �LS on the system’s stability requires the computation of the system’s eigenvalues. Referring
to the procedure outlined in Aside 5, we can immediately find the state matrix corresponding
to (3.19) and (3.25). This turns out to be

�′
A =

[
1 TS

LS

− LS±�LS
TS

−1

]
. (3.26)

It is now immediate to find the eigenvalues of matrix �′
A. These are given by the following

expression:

λ1,2 =
√

±�LS

LS
⇒ |λ1,2| =

√
�LS

LS
. (3.27)
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FIGURE 3.19: Simulation of the VSI with the predictive controller and different level of mismatch
on parameter LS. The figure shows the response to a step reference change of the sampled VSI output
current IO.

From (3.27) we see that the magnitude of the closed loop system’s eigenvalues is limited to
the square root of the relative error on LS. This means that unless a higher than 100% error is
made on the estimation of LS or, equivalently, unless a 100% variation of LS takes place, due to
changes in the operating conditions, the predictive controller will keep the system stable. Please
note that, interestingly, this result is independent of the sampling frequency. Of course, even
if instability requires bigger than unity eigenvalues, the good reference tracking properties of
the predictive controller are likely to get lost, even for smaller than unity values of the relative
error. We can visualize the effect of �LS considering Fig. 3.19. Please note that, differently
from previous figures, Fig. 3.19 shows the sampled current and its reference to better put into
evidence the effect of the parameter mismatch. We can immediately see how the presence of
a mismatch determines an oscillatory response. Please note that the undershoot is not affected
by the amount of mismatch, while the damping factor is. With a 95% mismatch the response
is lightly damped and barely acceptable for practical applications.

As it might be expected, the robustness of the predictive controller to mismatches gets
worse if the estimation of the phase voltage is used instead of its measurement. The analytical
investigation of this case is a little more involved than the previous one, but still manageable
with pencil and paper calculations. The procedure consists in writing the system (3.19), con-
troller (3.21), and estimator (3.24) equations, either solving them using Z-transform to find
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the reference to output transfer function, or, equivalently, arranging them to get the state ma-
trix, and, finally, examining the characteristic polynomial of the system. Following the former
procedure, we get

λ(z) = z3 ± 3 · �LS

LS
· z ± 2 · �LS

LS
. (3.28)

It is now possible to plot the zeros of the characteristic polynomial, i.e., the closed loop
system eigenvalues, as functions of �LS. Considering only negative signs in (3.28), we find
the results presented in Fig. 3.20. The figure shows that only a 20% error is allowed before
system instability occurs. It is worth noting that this result is independent of the switching
frequency since (3.28) is only a function of the mismatch error �LS. Moreover, it is interesting
to note that the unstable pole is at half of the sampling frequency, since it lies on the real
axis. Instead, considering positive signs in (3.28) a similar situation can be found, where the
minimum variation required to induce instability is somewhat higher than the previous one.
Fig. 3.20, therefore, represents the worst-case condition.

The results we have just found seem to completely undermine the practical applicability
of the dead-beat current controller, especially when the output voltage estimation is considered.
Fortunately, this is hardly the case. The reason is that it is possible, with some modifications
of the controller structure, as those suggested in [10, 11], to strongly improve the controller
robustness, making it perfectly apt to practical applications.

1
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Im(z)

FIGURE 3.20: Plot of the closed loop system eigenvalues as functions of the parameter LS mismatch.
(a) �LS = 0. (b) �LS = 0.2 · LS. (c) �LS = 0.3 · LS .
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3.2.7.3 Effects of Converter Dead-Times
Converter dead-times are another nonideal characteristic of the VSI that is not taken into
account by the model which the predictive controller is based on. In a certain sense, their
presence can be considered a particular case of model mismatch. We know from Section 2.1.4
that the presence of dead-times implies a systematic error on the average voltage generated by
the inverter. The error has an amplitude that depends directly on the ratio of dead-time duration
and modulation period and a sign that depends on the load current sign. As we did in Section
2.3.1, we can model the dead-time effect as a square-wave disturbance having a relatively small
amplitude (roughly a few percent of the dc link voltage) and opposite phase with respect to the
load current. We can consider this disturbance as an undesired component that is summed, at
the system input, to the average voltage requested by the current control algorithm.

As such, the disturbance should be, at least partially, rejected by the current controller.
The effectiveness of the input disturbance rejection capability depends on the low-frequency
gain the controller is able to determine for the closed loop system. And this is where the dead-
beat controller shows another weak point. We have seen how the dead-beat action tends to
get from the closed loop plant a dynamic response that is close to a pure delay. Unfortunately,
this implies a very poor rejection capability for any input disturbance. To clarify this point we
can again refer to Aside 5, Fig. A5.1, and compute the closed loop transfer function from the
exogenous disturbance ES to the output I O. Indeed, this is the transfer function experienced
by the dead-time induced voltage disturbance as well. Simple calculations yield

I O

ES
(z) = 1

z2
· TS

LS
· (z + 1), (3.29)

which means that the output is proportional to the sum of two differently delayed input samples.
In terms of disturbance rejection the result is rather disappointing. Plotting the frequency
response of (3.29) we find that it is practically flat from zero up to the Nyquist frequency; i.e.,
there is no rejection of the average inverter voltage disturbance.

Consequently, we cannot expect the dead-beat controller to compensate for the dead-
time effect. This means that unless some external, additional compensation strategy is adopted,
a certain amount of current distortion is likely to be encountered. A typical example is shown
in Fig. 3.21, where the sampled output current and its reference are shown. We can clearly
see the double effect of uncompensated dead-times: (i) a systematic amplitude error and
(ii) a crossover distortion phenomenon. The reason for the former is an obvious consequence
of the negligible rejection capability of the dead-beat controller. The latter instead is due to the
sign inversion of the voltage disturbance, taking place at the moment of current zero crossing,
which the controller tries to compensate for. We can also note how, because of the current ripple
amplitude, the sign of the voltage disturbance is not stable around the zero crossing instant,
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FIGURE 3.21: Simulation of the VSI with the predictive controller and dead-times. The dead-time ef-
fects are as follows: (i) crossover distortion, visible in the inset; (ii) steady-state error between the amplitude
of the converter current and its reference. The sampled output current is shown instead of the instanta-
neous one to eliminate the ripple, which can mask the error. Dead-times are set to 5% of the modulation
period, just to magnify the effect.

which makes the transient duration longer. It is worth noting that Fig. 3.21 is obtained assuming
that the duration of the dead-time is about 5% of the modulation period. This is an exaggerated
value, which is used in the simulation on purpose, just to magnify the current distortion. In
practical situations, dead-times are in the range between 1% and 2% of the modulation period
and the overall effect on the converter output current is accordingly smaller.

There are different possible methods to compensate the dead-time induced output current
distortion, which are sometimes also used in conjunction with regulators, like the PI controller,
which present a significant low-frequency rejection capability. That is because such regulators
are nonetheless exposed to crossover distortion that can be unacceptable for some applica-
tions, like, for example, high-quality electrical drives. In the case of the dead-beat controller
some form of compensation is instead mandatory. Compensation methods can be divided into
(i) closed loop or on-line and (ii) open loop or off-line. The best performance is offered by closed
loop dead-time compensation, which requires, however, the measurement of the actual inverter
average output voltage. Its comparison with the voltage set-point provided to the modulator
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gives sign and amplitude of the dead-time induced average voltage error, which can therefore
be compensated with minimum delay simply by summing to the set-point for the following
modulation period the opposite of the measured error. The need for measuring the typically
high output inverter voltage requires particular care. The estimation of the inverter average
output voltage is normally done by measuring the duration of the voltage-high and voltage-low
parts of the modulation period, i.e., by computing the actual, effective output duty-cycle.

However, much more often, off-line compensation strategies are used. These offer a lower
quality compensation, but can be completely embedded in the modulation routine programmed
in the microcontroller (or DSP), requiring no measure. The off-line compensation of dead-
times is based on a worst-case estimation of the dead-time duration and on the knowledge of
the sign of the output current, which is normally inferred from the reference signal (not from the
measured output current, to avoid any complication due to the high-frequency ripple). Given
both of these data, it is possible to add to the output voltage set-point a compensation term that
balances the dead-time induced error. The method normally requires some tuning, in order to
avoid under- or overcompensation effects. The results are normally quite satisfactory, unless a
very high precision is required by the application, allowing us to eliminate the amplitude error
and to strongly attenuate the crossover distortion phenomenon.

3.2.7.4 Comparison with PI Controller
A final remark is needed to summarize the main features of the dead-beat predictive current
controller and to compare its performance with that of the PI controller. The predictive controller
is capable of a very fast dynamic response, the best among digital current controllers and clearly
superior to that achievable by any digital PI controller. Therefore, it is very well suited to
those applications of VSIs where the capability of tracking rapidly variable current reference
signals is required. Examples of these applications can be the active power filters and the high-
performance adjustable speed drives. On the other hand, the predictive controller, at least
in its basic implementation, requires the measurement of the load voltage, which generally
complicates the hardware needed for its implementation well beyond what is required by a PI
controller. We have also seen how estimation techniques can be employed to avoid the voltage
measurement, but we need to point out that (i) the estimation makes the controller more
sensitive to model and parameter mismatches, and (ii) the dynamic performance is worsened,
although it usually remains superior to that of a conventional PI regulator. Finally, we have
seen how the compensation of dead-times is practically mandatory for the dead-beat controller,
which has no inherent integral action, while it may not be required by the PI, unless very low
distortion current waveforms are required by the application. Moreover, the sensitivity of the
predictive controller to measurement noise is surely higher than that of the PI controller, which
calls for particular care in the design of the signal conditioning circuitry.
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C H A P T E R 4

Extension to Three-Phase Inverters

In this chapter we present the possible means for the application to three-phase inverters of
what we have just seen about digital current control of single-phase VSIs. When the three-
phase converter is characterized by four wires, i.e., three phases plus neutral, the application is
straightforward, since a four-wire three-phase system is totally equivalent to three independent
single-phase systems. Of course, this particular situation does not deserve any further discussion.
In contrast, we need to apply a little more caution when we are dealing with a three-phase
system with an insulated neutral, i.e., with a three-wire, three-phase system. The objective
of this chapter to give the basic knowledge needed to extend the control principles we have
previously described for these kinds of systems. Two fundamental tools are required to design
an efficient three-phase current controller: (i) αβ transformation and (ii) space vector modulation
(SVM).

In the first part of this chapter, we are going to illustrate the principles of both. Next,
we will show how, under certain assumptions, the three-phase system dynamic model can be
transformed into an equivalent two-phase system, with independent components. We will see
how, in this particular case, the controller design for the two-phase system is identical to that
of a single-phase one.

In the final part of this chapter we will discuss a particular kind of two-phase controller,
known as rotating reference frame controller, presenting the merits and limitations of this
solution.

4.1 THE αβ TRANSFORMATION
The αβ transformation represents a very useful tool for the analysis and modeling of three-phase
electrical systems. In general, a three-phase linear electric system can be properly described in
mathematical terms only by writing a set of tridimensional dynamic equations (integral and/or
differential), providing a self-consistent mathematical model for each phase. In some cases
though, the existence of physical constraints makes the three models not independent from
each other. In these circumstances the order of the mathematical model can be reduced without
any loss of information. We will see a remarkable example of this in the following.
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Supposing that it is physically meaningful to reduce the order of the mathematical model
from three to two dimensions, the αβ transformation represents the most commonly used
relation to perform the reduction of order. To explain the way it works we can consider a tridi-
mensional vector �xabc = [xa xb xc ]T that can represent any triplet of the system’s electrical
variables (voltages or currents). We can now consider the linear transformation, Tαβγ ,⎡

⎢⎣ xα

xβ

xγ

⎤
⎥⎦ = Tαβγ

⎡
⎢⎣ xa

xb

xc

⎤
⎥⎦ =

√
2
3

⎡
⎢⎣ 1 −1/2 −1/2

0
√

3/2 −√
3/2

1/
√

2 1/
√

2 1/
√

2

⎤
⎥⎦

⎡
⎢⎣ xa

xb

xc

⎤
⎥⎦ , (4.1)

which, in geometrical terms, represents a change from the set of reference axes denoted as abc
to the equivalent one indicated as αβγ . This change of reference axes takes place because the
standard R3 orthonormal base Babc,

Babc = {[1 0 0]T, [0 1 0]T, [0 0 1]T}, (4.2)

is replaced by the new base Bαβγ ,

Bαβγ =
√

2/3{[1 − 1/2 − 1/2]T, [0
√

3/2 −
√

3/2]T, [1/
√

2 1/
√

2 1/
√

2]T}
(4.3)

The Bαβγ base is once again orthonormal, i.e., its vectors have unity norm and are orthog-
onal to one another thanks to the presence of the

√
2/3 coefficient, which also appears in (4.1).

This coefficient is sometimes omitted when the maintenance of the base orthonormality is not
considered essential. However, orthonormality implies that (i) the inverse of the Tαβγ transfor-
mation is equal to the matrix transposed, i.e., T −1

αβγ = TT
αβγ and (ii) the computation of electrical

powers is independent from the transformation of coordinates, i.e.,
〈
�eabc,�iabc

〉
=

〈
�eαβγ ,�iαβγ

〉
,

where the “〈〉” operator represents the scalar product of vectors, �e is a voltage vector and �i is a
current vector. The latter property justifies the fact that (4.1) is sometimes called the “power
invariant” transformation. The geometrical interpretation of (4.1) is shown in Fig. 4.1(a).

The Tαβγ transformation has an additional interesting property, which becomes clear
when we take into account the condition

xa + xb + xc = 0 ⇒ xγ = 0, (4.4)

whose meaning is to operate the restriction of the tridimensional space to a plane π Fig. 4.1(a)
Examining (4.3) and (4.4) we can see how the first two components of the base Bαβγ lie
on π , while the third is orthogonal to π . This means that the first two components of Bαβγ

actually represent an orthonormal base for plane π , while the third component has no projection
on π . This observation is fundamental for our conclusion: every time the constraint (4.4) is
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FIGURE 4.1: (a) Graphical representation of the Tαβγ coordinate transformation.

meaningful for a tridimensional system, the coordinate transformation Tαβγ allows us to describe
the same system in a bidimensional space without any loss of information. This holds because
any vector complying with (4.4) is actually lying on the plane π and, as such, can be expressed
as a linear combination of base vectors defined for π . We can therefore define the so-called αβ

transformation as follows:[
xα

xβ

]
= Tαβ

⎡
⎢⎣ xa

xb

xc

⎤
⎥⎦ =

√
2
3

[
1 −1/2 −1/2
0

√
3/2 −√

3/2

]⎡
⎢⎣ xa

xb

xc

⎤
⎥⎦ , (4.5)

and its inverse as⎡
⎢⎣ xa

xb

xc

⎤
⎥⎦ = TT

αβγ

⎡
⎢⎣ xα

xβ

0

⎤
⎥⎦ =

√
2
3

⎡
⎢⎣ 1 0

−1/2
√

3/2
−1/2 −√

3/2

⎤
⎥⎦

[
xα

xβ

]
= TT

αβ

[
xα

xβ

]
. (4.6)

Equation (4.6) is easily obtained exploiting the base orthonormality and considering the
transposed matrix of (4.5). In geometrical terms (4.5) simply determines the projection of any
vector �xabc = [xa xb xc ]T on the plane π . We need to underline once more that this is
physically meaningful only if the γ component of the vector �xabc = [xa xb xc ]T is zero. The
γ component, as can be easily verified, is nothing but the arithmetic average of the three vector
component values, also known as the common mode vector component. When this is not zero,
the application of the αβ transformation implies the loss of the information associated with the
common mode. It is also interesting to note that the projection on the plane π of the base Babc

determines three 120◦ angled axes, as shown in Fig. 4.1(b), which makes the matrix in (4.5)
easy to remember.

It is very useful to visualize the effect of the application of Tαβ to some particular cases.
We begin presenting the case of sinusoidal voltage signals. If we consider a triplet of symmetric
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sinusoidal signals like

ea = UM sin(ωt),
eb = UM sin(ωt − 2π/3), (4.7)
e c = UM sin(ωt +2π/3),

it is easy to verify that

eα =
√

3
2

UM sin(ωt),
(4.8)

eβ = −
√

3
2

UM cos(ωt).

It is possible to see that the space vector �eabc, associated with (4.7), satisfies the constraint
(4.4) and that, as such, it can be described without loss of information in the αβ reference

frame. In that frame, the vector �eαβ , can be interpreted as a
√

3
2UM amplitude rotating vector,

the angular rotation speed being equal to ω.

4.2 SPACE VECTOR MODULATION
Space vector modulation (SVM) is a frequently used method to implement PWM in three-
phase switching converters, with an insulated neutral. It allows us not only to simplify the
control organization, but also to maximize the exploitation of the converter hardware, inherently
realizing a third harmonic injection mechanism. The basic principles behind SVM can be
explained referring to the idealized three-phase voltage-source inverter of Fig. 4.2 As can
be seen, the structure is a straightforward extension of the single-phase one we have been
considering so far. Its characteristics and modes of operation are analyzed in detail in every
power electronics textbook (such as [1] and [2]), so we won’t spend many words on it. However,
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FIGURE 4.2: Three-phase VSI simplified schematic.
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three fundamental characteristics, essential to the understanding of what follows, have to be
underlined: (i) the converter has an insulated neutral, i.e., the circuit node indicated by N in
Fig. 4.2 is floating, (ii) there is a single input dc voltage source, which makes the phase voltages
Va , Vb , Vc , referred to node G, unipolar, and (iii) the load is generally symmetrical and balanced,
i.e., all impedances have the same values and ESa, ESb, and ESc are symmetrical and balanced
sinusoidal voltages.

The application of SVM requires the instantaneous inverter output voltage, represented
by the vector �Vabc = [Va Vb Vc ]T to be projected on the αβ reference frame, as defined in the
previous section. From Fig. 4.2 it is immediately recognizable that, at any instant each inverter
phase voltage can be either zero or equal to the dc link voltage VDC. Therefore, the inverter
output voltage vector can assume, at any instant, only one out of eight different values. The
possible output voltage vector values and their projections on the plane π are shown in Fig. 4.3.
As can be seen, there are two different possibilities to impose a zero phase-to-phase voltage
on the load. This property can be exploited in the implementation of SVM, for example, to
minimize the number of switch commutations.

The idea behind SVM is quite simple [3, 4]. A desired output voltage vector, represented
in the αβ reference frame, is obtained from the superposition of the inverter output vectors, so
that, on average, at the end of any modulation period a voltage equal to the desired one will have
been generated. The procedure can be explained referring to Fig. 4.4. The desired vector, �V ∗

αβ ,
is projected on the two closest inverter output state vectors, i.e., �V100 and �V110, in the example of
Fig 4.4. Of course, the position of �V ∗

αβ considered in this example is arbitrary; however, exactly
the same reasoning can be applied to different vector locations. The length of each projection,
V1 and V2, determines the fraction δ of the modulation period that will be occupied by each
output vector, according to the following relation:

δ1 = |V1|∣∣∣ �V100

∣∣∣ δ2 = |V2|∣∣∣ �V110

∣∣∣ . (4.9)

The application of the zero voltage vector for a fraction δ3 of the modulation period is
normally required to satisfy the following condition:

δ1 + δ2 + δ3 = 1, (4.10)

which simply expresses the fact that the modulation period must be fully occupied by output
voltage vectors. Following this procedure, the average inverter output voltage V o will be given by

V o = δ1V100 + δ2V110 + δ3V111 = V1 + V2 = �V ∗
αβ, (4.11)

as expected. Please note that (i) the zero vector can be either �V111 or, equivalently, �V000, (ii) the
order of application of the inverter output vectors is arbitrary and can be used as a degree of
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FIGURE 4.3: Three-phase inverter output voltage vectors and their projection on the plane π .
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FIGURE 4.4: Generation of the voltage reference vector by superposition of inverter output vectors.

freedom in the implementation of SVM (see Aside 6), and (iii) the commutation from V1 to
V2 always requires the commutation of a single inverter phase, no matter what sector of the
hexagon the reference vector is lying on.

The implementation of the above-described procedure requires some amount of com-
putation. In any modulation period, given the α and β components of the voltage reference
vector �V ∗

αβ one has to (i) locate the two closest inverter output vectors, i.e., the hexagon sector
where �V ∗

αβ is lying on, (ii) determine the amplitude of V1 and V2, and (iii) calculate the values
of δ1, δ2, δ3, using (4.9) and (4.10). Of course, the simplest way to perform these computations
is by using a microcontroller or DSP. This is the reason why SVM is almost always associated
with digital control. In Aside 6, we will further discuss some implementation issues of SVM.

We have seen in the previous section that the projection on the αβ reference frame of
a triplet of symmetrical, sinusoidal, phase voltages is a constant amplitude rotating vector.
Therefore, every time our three-phase VSI has to generate a triplet of sinusoidal phase voltages,
which happens very frequently, the SVM procedure will have to synthesize the rotating reference
vector corresponding to it. This will determine a period-by-period adjustment of the output
vectors and of the δ1, δ2, δ3 values. It can be interesting to identify the locus of the constant
amplitude rotating reference vectors that can be generated by the inverter without distortion.
This is represented by the circle inscribed in the vector hexagon (Fig. 4.4). It is easy to verify
that every vector that lies inside the circle generates a valid δ1, δ2, δ3 triplet. Instead, a vector
that lies partially outside the circle cannot be generated by the inverter, because the sum of the
corresponding δ1, δ2, δ3 becomes greater than unity. This situation is called inverter saturation
and generally causes output voltage distortion.

If we consider (4.5) and Fig. 4.4, it is easy to calculate the amplitude UMMAX of the voltage
triplet (4.7), which corresponds to a rotating vector having an amplitude equal to the radius of
the inscribed circle. We find that√

3
2

UMMAX =
√

2
3

VDC

√
3

2
⇔ UMMAX = 2√

3

VDC

2
∼= 1.15

VDC

2
, (4.12)
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FIGURE 4.5: Tridimensional view of the space vector hexagon.

which shows a very interesting fact: the application of SVM increases the range of the possi-
ble sinusoidal output voltages by 15% with respect to what could be expected looking at the
schematic of Fig. 4.2. The reason why this happens is that the inverter output voltage vectors
of Fig. 4.3 do not comply with the constraint (4.4), as it is easy to verify. Consequently, what
is used to synthesize the desired output voltage vector �V ∗

αβ is not the superposition of vectors
lying on the plane π as Fig. 4.4 might suggest. A more realistic representation of the inverter
output vectors, which puts into evidence their γ component, is shown in Fig. 4.5.

Aside 6. Implementation of Space Vector Modulation

We now consider a possible implementation algorithm for space vector modulation, which
can be directly programmed into a microcontroller or a digital signal processor. The first issue
in SVM implementation is the identification of the hexagon sector where the reference vector
is lying. This can be done by implementing once again a base change from the αβ reference
frame to a new set of three different reference frames. Fig. A6.1 shows the considered set.

Z1x

Z1y

1 
2 

3 

4 
5 

6 

Z2y Z2x

Z3y

Z3x

FIGURE A6.1: Set of three bidimensional reference frames.
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As can be seen, each frame refers to a particular couple of hexagon sectors. The method we
propose simply requires the projection of the inverter output voltage reference vector �V ∗

αβ

onto each one of the three hexagon reference frames. This is easily implemented with the
following set of reference base change matrixes:

M1 =

⎡
⎢⎢⎣1 − 1√

3
0

2√
3

⎤
⎥⎥⎦ M2 =

⎡
⎢⎢⎣1

1√
3

−1
1√
3

⎤
⎥⎥⎦ M3 =

⎡
⎢⎢⎣0

2√
3

−1 − 1√
3

⎤
⎥⎥⎦ , (A6.1)

which map the orthogonal set of axes α and β onto the three, nonorthogonal sets Z. It is
interesting to note that the algorithm required to implement the three projections is quite
simple. Here we propose a possible operation sequence that gives the six Z components:

tmp = V ∗
β√
3

; save to a temporary register

Z1x = V ∗
α − tmp; Z1x found

Z2y = −Z1x ; Z2y found

Z1y = 2tmp; Z1y found

Z3x = Z1y ; Z3x found

Z2x = V ∗
α + tmp; Z2x found

Z3y = −Z2x ; Z3y found

As can be seen, the sequence implies the execution of only one multiplication. Once the
Zix Ziy components are known, it is simple to determine the hexagon sector by checking
their sign. The procedure outlined in the flow chart of Fig. A6.2 accomplishes this task.
The sequence of sign checks can be efficiently implemented with logic operations in the
modulator routine. In the end, with a few lines of code we have determined (i) the position
of the reference vector in the hexagon and (ii) the lengths of its projections on the two
adjacent output voltage vectors (represented by one of the three computed Zix Ziy couples).
We are therefore ready to program the PWM modulator to generate such vectors, plus one
of the two possible zero vectors. There are only two final issues that need to be taken care
of: the sequence of vector generation and the possible occurrence of saturation.

As far as the former issue is concerned, we present two examples of possible generation
sequences in Fig. A6.3. Depending on the controlled system characteristics, one can be
more advantageous than the other. As far as the latter is concerned, there is not a single
straightforward way to cope with saturation.

All strategies imply the acceptance of some degree of distortion of the output voltage. Once
saturation is detected, which is easily done (the output vector durations, summed together,
exceed the duration of the modulation period), some strategies reduce proportionally each
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FIGURE A6.2: Flow chart of the sector identification algorithm.
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FIGURE A6.3: Two different application sequences for the same output voltage vectors. The se-
quence on the left implies a minimization of the number of switchings. The sequence on the right
implies the minimization of the current ripple amplitude (voltage pulses have even symmetry). Note
that each strategy develops in two adjacent modulation periods.

duration until a sum equal to the modulation period duration is obtained. Other strategies
consider the reduction of only one component (the shorter of the two) so as to get their sum
again to be equal to the duration of the modulation period. The latter strategy, of course,
implies the loss not only of the correct vector amplitude, but also of its phase. Another
issue of some interest concerning saturation is the automatic change from linear to six-step
modulation [5], which can be necessary in heavy saturation conditions. It is easy to verify
that this is inherently achieved by the second saturation strategy we have just described.
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Therefore, any time one of the inverter output voltage vectors is generated, a nonzero γ

component is produced on the load, which, being orthogonal to π is not visible in the vector
decomposition of Fig. 4.4. Referring to Fig. 4.2, this means that SVM implies a particular
modulation of the voltage between nodes N and G, VNG. This is due to the common mode
component of the inverter output voltage vectors. Indeed, it is easy to demonstrate that, in
the case of a symmetrical load structure, almost always encountered in practice, VNG is in-
stantaneously and exactly equal to the γ component of the inverter output voltage. The most
important implication of this fact is that the phase to neutral voltage of the load will always be
insensitive to any common mode component of the inverter output voltage, i.e., one can freely
add common mode components to the �Vabc vector, without perturbing the load voltage.

This is exactly what SVM implicitly does. Its effect, from the inverter’s standpoint, can be
proved to be very similar to that of the third harmonic injection, sometimes employed in analog
three-phase PWM implementations. An increase by 15% of the voltage–amplitude range that
corresponds to a linear converter operation, i.e., to the absence of any saturation phenomenon,
is obtained, as (4.12) clearly demonstrates.

This remark concludes our essential presentation of SVM. We are well aware that several
other interesting issues could be addressed, but we feel like what we have presented is more than
enough to allow us to discuss the following digital control application examples. The interested
reader can find very useful additional information about SVM in the fundamental papers [3]
and [4] and in several others that, in more recent times, have contributed to the development
of PWM strategies for multiphase converters.

4.2.1 Space Vector Modulation Based Controllers
The typical organization of a three-phase VSI controller based on SVM is shown in Fig. 4.6. As
can be seen, the controller takes advantage of the application of αβ transformations to operate on
two sampled variables instead of three. This not only simplifies the control algorithm, but also
allows to directly generate the reference voltage components for the SVM in the αβ reference
frame. From those components, a suitable modulation procedure, like the one outlined in Aside
6, will be able to determine the phase duty cycles, managing inverter saturation if needed.

One could wonder whether the application of αβ transformations to the controller input
signals, in general, modifies the transfer function or state space model the controller design is
based on. Clearly, if this is the case, passing from the three-phase system to the electrically
equivalent two-phase one implies the need for a complete controller redesign. Luckily, this
is hardly the case. Under the assumption of balanced and symmetrical load, we can indeed
demonstrate that the design of the α− or β-axis controller is exactly identical to that of a
single-phase current controller operating on one of the three inverter phases. In order to show
this, we need to define the continuous time state space model of the inverter and its load. It is
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FIGURE 4.6: Organization of a three-phase digital current controller based on SVM.

easy to verify that this is given by

d
dt

⎡
⎢⎣ Ia

Ib

Ic

⎤
⎥⎦ = − RS

LS

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣ Ia

Ib

Ic

⎤
⎥⎦ + 1

3LS

⎡
⎢⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎥⎦

⎡
⎢⎣ Va

Vb

Vc

⎤
⎥⎦

− 1
LS

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣ ESa

ESb

ESc

⎤
⎥⎦ (4.13)

where the instantaneous neutral to ground voltage expression VNG = 1
3 (Va + Vb + Vc ) has been

used. Now, if we apply to the different vectors in (4.13) the Tαβ transformation, i.e., we replace
each vector �xabc with TT

αβ �xαβ , after some rearrangement, we get

d
dt

�Iαβ = − RS

LS
Tαβ I3TT

αβ
�Iαβ + 1

3LS
Tαβ

⎡
⎢⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎥⎦ TT

αβ
�Vαβ − 1

LS
Tαβ I3TT

αβ
�ESαβ,

(4.14)
where I3 is the 3 × 3 identity matrix. Simplifying the matrix products, we find the following
result:

d
dt

�Iαβ = − RS

LS
I2 �Iαβ + 1

LS
I2 · �Vαβ − 1

LS
I2 �ESαβ, (4.15)
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where I2 represents the 2 × 2 identity matrix. Please note that the contribution of VNG to the
system dynamics, known as phase interference, has been cancelled by the application of the
Tαβ transformation, as expected. Equation (4.15) shows that the equations for the two axes
are now fully decoupled, i.e., totally independent from each other. In addition, the structure
and parameters of the two-axis system are identical to that of the original three-phase system.
Consequently, under the assumption of symmetrical and balanced load, it is not necessary to
have any model adjustment and the design of the current regulator for the α and β axes can be
done exactly as on a single-phase inverter.

This very important result implies that everything we have said about PI and predictive
digital current control in the previous chapter can be immediately used also in three-phase
inverters. The only additional elements we have to take into account are the implementation of
a suitable SVM algorithm and of the αβ transformation.

4.3 THE ROTATING REFERENCE FRAME CURRENT CONTROLLER
Once the three-phase inverter of Fig. 4.2 has been proved to be completely equivalent to a couple
of independent single-phase inverters, other questions may be asked. Indeed, one could wonder
whether the mapping of the system in the αβ reference frame could be somehow exploited to
improve the current controller dynamic performance.

While this is not possible for the dead-beat controller, which already provides the best pos-
sible dynamic response among digital current regulators, in the case of the PI current controller
the answer to the above question is affirmative. The implementation of the so-called rotating
reference frame controller indeed allows a significant improvement of the reference tracking ca-
pabilities of the PI regulator. This section is therefore dedicated to the illustration of the basic
principles behind this solution.

The first concept we have to introduce is that of Park’s transformation, a very well-known
tool for electrical machine designers.

4.3.1 Park’s Transformation
The idea behind Park’s transformation is quite simple. Instead of mapping the three-phase
inverter and its load onto a fixed two-axis reference frame, this transformation maps it onto
a two-axis synchronous rotating reference frame. This practically means moving from a static
coordinate transformation to a dynamic one, i.e., to a linear transformation whose matrix has
time varying coefficients.

Before entering into the mathematical details, we may refer to Fig. 4.7 to get an idea of
Park’s transformation’s meaning. The transformation defines a new set of reference axes, called
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FIGURE 4.7: Vector diagrams for Park’s transformation.

d and q , which rotate around the static αβ reference frame at a constant angular frequency ω.
Referring to Fig. 4.7, this means that θ = ωt.

We have seen in section 4.1 that the application of the αβ transformation to a triplet
of symmetrical and balanced sinusoidal signals (4.7) turns them into a couple of 90◦ shifted
sinusoidal signals (4.8), whose geometrical interpretation can be that of the rotating vector, �V .
The rotating vector angular speed equals the angular frequency of the original voltage triplet,
which we can consider the fundamental frequency of our three-phase system. Now, if the angular
speed of the rotating vector equals ω, what happens is that, in the dq reference frame, the vector
�V is not moving at all! Referring again to Fig. 4.7, what we have just seen implies that angles
θ1 and θ2 will both increase with angular frequency ω, while angle ϕ will be constant and so will
be the lengths of vector �V projections on the d and q axes.

The advantage of using Park’s transformation is represented exactly by the fact that
sinusoidal signals with angular frequency ω will be seen as constant signals in the dq reference
frame. We have seen how a PI controller, especially a digital PI controller, can be affected by
a nonnegligible tracking error with respect to sinusoidal reference signals, which is due to the
limited closed loop gain at the frequency of interest. In contrast, a PI controller can guarantee
zero tracking error on constant signals, thanks to the built-in integral action. Therefore, if
a PI controller is implemented in the dq reference frame, without any additional provision,
its tracking error with respect to sinusoidal signals having angular frequency equal to ω, i.e.,
to the frequency of Park’s transformation, will become equal to zero. As we will see in the
following, this principle is exploited in the implementation of the so-called synchronous frame
current controllers, where the Park’s transformation angular speed is chosen exactly equal to the
three-phase system fundamental frequency.
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We can now show the mathematical formulation of Park’s transformation. Considering
Fig. 4.7, it is easy to demonstrate that this is given by the following matrix:[

xd

xq

]
= Tdq

[
xα

xβ

]
=

[
cos θ sin θ

− sin θ cos θ

][
xα

xβ

]
, (4.16)

where θ = ωt. Please note that, using complex phasorial representation of the vectors, (4.16)
can be very simply expressed as

�xdq = xd + jxq = (
xα + jxβ

) (
cos θ − j sin θ

) = �xαβe−jθ . (4.17)

It is easy to show that Tdq is associated with another orthonormal base of the R2 space,
so that its inverse can be immediately found:[

xα

xβ

]
= TT

dq

[
xd

xq

]
=

[
cos θ − sin θ

sin θ cos θ

][
xd

xq

]
, (4.18)

which, using the complex phasorial notation, can be simply written as �xαβ = �xdqe+jθ .
As we did in the previous section, we can as well investigate the transformation of the

system state equations, determined by the application of Park’s transformation. To do this, all
we need to do is consider equation (4.15) and use (4.18) on the left- and right-hand sides of it.
Almost immediately we find the following result:

d
dt

�Idq =
[

− RS
LS

+ω

−ω − RS
LS

]
�Idq + 1

LS
I2 �Vdq − 1

LS
I2 �ESdq, (4.19)

which shows a very interesting fact. The two system dynamic equations are now complicated
by the cross-coupling of the two axes, i.e., they are no longer independent from each other.
This is the reason why, in control schemes such as the one of Fig. 4.8, decoupling feed-forward
paths are sometimes included. These make the system dynamics totally identical to those of the
original one.

To complete this brief discussion of Park’s transformation we need to say that, in addition
to what we have seen so far, it is also possible to implement the so-called inverse sequence Park’s
transformation. This is nothing but the transformation we have just presented, which we may
now identify as the direct sequence Park’s transformation, where the direction of the dq axes
rotation is assumed to be inverted. It is immediate to verify that the implementation of the
inverse-sequence transformation simply amounts to swapping the roles of (4.16) and (4.18).

One could wonder why the inverse sequence transformation is ever required, since we have
shown that the direct sequence transformation is capable of mapping all the αβ space without
any loss of information. The reason is that, so far, we have considered balanced and symmetrical
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FIGURE 4.8: Organization of a three-phase digital current controller in the dq reference frame.

three-phase systems, but, more generally, impedance unbalances and/or unsymmetric voltage
sources can be found. In this case, a three-phase system can be shown to be equivalent to
the superposition of a direct sequence system and an inverse sequence system, both of them
symmetrical and balanced and so both properly describable in the αβ reference. If we neglect
the so-called omopolar components, the superposition of both the direct and the inverse sequence
two-phase systems is exactly equivalent to the original three-phase system, while none of them
is by itself. Of course, in the case of zero or negligible unbalance/unsymmetry, the inverse
sequence components will be accordingly zero or negligible, which motivates, in the majority
of practical cases, the use of (4.16) and (4.18) alone.

Finally, it is important to underline that, because the elements of Tdq and TT
dq are not time

invariant, the application of Park’s transformation, differently from the αβ transformation,
affects the system dynamics. This means that any controller, designed in the dq reference frame,
is actually equivalent to a stationary frame controller that does not maintain the same frequency
response. To keep the discussion reasonably simple, we refer, for the moment, to analog current
regulators. In the end, we will see how to adapt our conclusions to digital current regulators.

4.3.2 Design of a Rotating Reference Frame PI Current Controller
For the reasons previously explained, we are very interested in PI controllers, which, once
implemented in the rotating reference frame, can offer zero steady-state tracking error [6] for
sinusoidal signals whose angular frequency is equal to ω. In some applications, where the phase
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error between the current reference signal and the inverter phase current must be as small as
possible, this indeed represents the optimal solution. In order to properly design the PI controller
in the dq reference frame, we need to understand what is the corresponding stationary frame
controller. We begin by presenting a suitable model of the rotating reference frame current
controller. This is shown in Fig. 4.9.

There are several important issues related to Fig. 4.9. First of all, as can be seen, the
schematic is drawn in vector form, i.e., the indicated quantities represent bidimensional currents
and voltages. Accordingly, Park’s transformation is simply represented by multiplication with
the complex phasors e ẋ jθ , where, as usual, θ = ωt. Secondly, both direct and inverse sequence
transformation are taken into account, so as to make the schematic representative of as many
practical cases as possible.

Even more importantly, the PI controller has been decomposed into a parallel structure,
as it is always possible to do. Once this is done it is immediate to realize that, since the
proportional gain is time invariant, the Park’s transformation operators that would apply to
it can be eliminated, as they are completely ineffective on a constant gain. Finally, the two
proportional parts, respectively operating on the direct and inverse sequence components of the
current error, can be unified, because they turn out to be exactly identical. Therefore, in Fig. 4.9
and the following, gain KP must be interpreted as the sum of the proportional gains of the direct
and inverse sequence controllers.

As can be seen, what we ended up with is a proportional controller whose gain can
be designed exactly as that of a single-phase proportional current controller, which operates
in parallel with two rotating reference frame integral controllers. The integral gain can be
designed recalling that its effect will be to bring down to zero the tracking error with respect
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to sinusoidal reference signals having an angular frequency equal to ω. Of course, the higher
the integral gain, the faster the achieved speed of response. An interesting problem, however,
is how to predetermine and control the settling time of the integral controller action, so as to
avoid ringing, for example, in the presence of a step reference variation. This problem can be
effectively solved considering a different interpretation of the rotating reference controller, as is
presented in the next section.

To conclude the discussion of rotating reference frame PI current controllers, we have to
address the problem of its digital implementation. Of course, it is highly recommendable that
this solution is implemented digitally, as this makes it very simple to implement the different
coordinate transformations involved in the controller operation. Once again, discretization is a
very useful tool to accomplish this task. Based on what we have just seen, it is easy to understand
that its application to the proportional part of the controller poses no significant problem. The
only caution we need to apply may be in the continuous time domain design phase, where the
phase margin we require for the open loop gain might be slightly oversized to cope with the
calculation delay.

The application of discretization to the integral part of the controller is also relatively
simple, because we have seen how Euler, or trapezoidal, numerical integration can effectively
replace the analog integrator. The only caution we need to apply is the adjustment of the gain
value, which has to be multiplied by the sampling period. In conclusion, a possible schematic of
the digital version of the controller presented in Fig. 4.9, is that shown in Fig. 4.10. Note that
the different vectors of Fig. 4.10 have now to be interpreted as sampled signals. It is also possible
to see that the integral controllers have been discretized using the backward Euler method.
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FIGURE 4.10: Discretized version of the rotating reference PI current controller.
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4.3.3 A Different Implementation of the Rotating Reference Frame
PI Current Controller

We now want to derive an equivalent stationary frame controller to replace the integral part of
the rotating reference frame PI of Fig. 4.9. In order to do that, we consider the Laplace operator
and, in particular, the following property:[

L
(
eλt · f (t)

)]
(s ) = [L ( f )] (s − λ) , (4.20)

which is going to prove very useful to our purpose. Theorem (4.20) says that the multiplication
by eλt in the time domain results into a frequency translation in the s-domain. This means
that, in the controller representation of Fig. 4.9, we can operate the substitution shown in
Fig. 4.11.

Doing that, we obtain an equivalent stationary frame controller both for the direct
sequence and for the inverse sequence components of the voltage reference vector, �V ∗

dq+ and
�V ∗

dq- respectively. We then find, summing the two components, that the transfer function
between the current error vector and the voltage reference vector, in the stationary reference
frame, is as follows:

�V ∗
αβ (s )

�εαβ (s )
=

�V ∗
αβ+ (s )

�εαβ (s )
+

�V ∗
αβ− (s )

�εαβ (s )
= KI

s + jω
+ KI

s − jω
= 2KI

s
s 2 + ω2

. (4.21)

This very important result [7, 8] shows that the stationary frame equivalent of the rotating
frame controller integral part is just a second-order resonant band pass filter, whose resonance
frequency is exactly equal to ω. It is worth noting that the resonant filter presents zero
damping factor and that the role of the integral gain is to determine the filter selectivity and,
consequently, its settling time in response to perturbations. From (4.21) we see that increasing
the KI value determines a reduction of the filter selectivity and, consequently, a faster settling
time. In contrast, reducing KI determines a higher filter selectivity and, consequently, a longer
settling time. A detailed explanation of the design criteria for this regulator, which allows us
to properly set the KP and KI gains, is reported in Aside 7.

s

KI

v

jws

KI

+

*
dqV +

r

s

KI

jws – 

KI

*
dq–V

r

*V +
r

*V
r

eab

veab

veab

veab

ab

–ab

*V +
r

*V
r

ab

–ab

–jqe

–jqejqe

jqe

FIGURE 4.11: Laplace transformation of the rotating reference controller.



100 DIGITAL CONTROL IN POWER ELECTRONICS

Aside 7. Design of a Stationary Frame Current Regulator with Zero Steady-State Error

In Asides 2 and 3, we have determined the proportional and integral gains of a PI current
controller. In this aside, we would like to illustrate a simple design example of a stationary
frame current regulator composed, as shown in Fig. A7.1, of a proportional gain KP and a
single resonant controller Fo(s ):

Fo(s ) = 2KIs
s 2 + ω2

o
, (A7.1)

tuned at the fundamental frequency ωo. The considered parameter values are VDC = 250 V,
fo = 60 Hz, LS = 3.5 mH, RS = 1�, fS = 10 kHz, GTI = 0.1. As done in Aside 2,
the controller design is first performed in the analog domain and then translated in
the z-domain using a discretization process. The proportional gain KP setting is based
on the desired cross-over angular frequency ωCL, as in any conventional PI control.
Assuming that the current loop bandwidth is 1/10 of the switching frequency (i.e.,
ωCL = 0.1ωS), KP

∼= ωCLLS/(2VDCGTI) = 0.88. Instead, the integral gain KI of the
resonant regulatorFo(s ) is based on the desired transient response and on the specified phase
margin phm . Indeed, since ωCL � ωo, Fo(s ) ≈ 2KI/s , so that the design of KI is the same as
that of the PI controller of Aside 2, except for a factor 2. In our case, setting the phase
margin phm = 45◦, we have KI = KIN = 1.25 krad s−1. Figs. A7.2 and A7.3 report the
current reference, IOREF, which is a sinusoidal waveform at ωo, the output current IO and the
current error εI. As can be seen, the stationary frame current regulator is able to ensure zero
steady-state errors for any reference or disturbance, whose frequency component is at ωo.

In order to highlight the properties of the resonant controller, we have reported in Fig.
A7.4 the current control loop gain using three different integral gains: (a) KI = 2KIN,
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(b) KI = KIN, (c) KI = 0.1KIN. As can be seen, the integral gain KI determines the filter
selectivity and, consequently, its settling time in response to perturbations at the angular
frequency ωo; thus the higher the KI, the lower the filter selectivity and, consequently, the
faster the settling time. In contrast, the lower the KI, the higher the filter selectivity and,
consequently, the longer the settling time.

In order to understand the settling time of the resonant controller and to establish an
alternative second design criterion for the integral gain KI, we may interpret the controller
organization of Fig. A7.1 as a multiloop scheme, where we first close the current control only
with the proportional gain KP. Then, the resonant filter Fo(s ) is designed so as to compensate
the residual errors. From this point of view, the transfer function that the resonant controller
Fo(s ) is going to compensate, once the proportional controller loop is closed, is

Go(s ) = mI(s )
e I(s )

= 1
KP

KPG(s )
1 + KPG(s )︸ ︷︷ ︸

Wp(s )

= 1
KP

Wp(s ), (A7.2)

where Wp(s ) is the transfer function between the current reference and the output current,
when only the proportional controller is active. In general, Wp(s ) has a gain close to unity
up to the desired bandwidth ωCL. In our case Wp(s ) is shown in Fig. A7.5. This controller
interpretation leads to the following very interesting observations.

(1) In the synchronous reference frame, the integrator controller KI/s compensates a transfer
function which is roughly approximated by 1/Kp. Thus, the integral gain KI can be designed
given the desired cross-over frequency ωro (or desired time constant tro = 1/ωro ), i.e.,

KI = KP

tro
= 2.2

KP

tr
, (A7.3)

where tr = noTo is the desired response time (evaluated between 10% and 90% of a step
response) for the fundamental frequency fo. In our case, tr = 2 ms or no = 0.12. Since we
are reasoning in the synchronous reference frame, the time constant is referred to the transient
of the envelope of the fundamental frequency fo. The transient response in Fig. A7.3 is longer,
since the step reference variation contains other frequencies, besides the fundamental one,
fo.

(2) Taking into account that any resonant controller determines a +90◦ phase shift before the
resonance frequency and −90◦ phase shift after the resonance frequency, it is intuitive to un-
derstand that the resonant controller will be able to compensate only those frequencies fo for
whom Wp(j2π fo) has a phase shift lower than −90◦, so that the cross over of the −180◦ sta-
bility limit is avoided. This imposes a limitation of the maximum angular frequency that it
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is possible to compensate, which must be kept lower than ωL, as indicated in Fig. A7.5.
This issue may be interesting for high-order harmonic compensation, as described in
Aside 8.
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FIGURE A7.5: Bode diagram of Wp(s ).

Aside 8. Stationary Frame Resonant Regulator: Extension to High-Order Harmonic
Components and Introduction of a Phase Lead Compensation.

The approach presented in Section 4.3.3 can be extended to multiple harmonic compensation
[8]. A typical example is the harmonic compensation in active power filters, where the current
reference contains several harmonic components. The most straightforward approach for the
compensation of the harmonic frequencies is the introduction of a resonant filter for each
harmonic component to be compensated. Thus, referring to Fig. A7.1, Fo becomes

Fo(s ) =
∑
k∈Nk

2 KIk s

s 2 + (kωo)2 . (A8.1)

Nk is the set of selected harmonic frequencies. Following the reasoning illustrated in the last
part of Aside 7, KIk design is based on the transient response desired for each harmonic
component. Thus, the design of each integrator gain KIk is given by

KIk = 2.2Kp

tr
= 2.2Kp

nok TS
, (A8.2)
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where tr = nok TS is the desired response time (evaluated between 10% and 90% of a step
response) for the generic harmonic k and nok is the number of supply periods TS. There
is, however, a bandwidth limitation that applies to each harmonic component, given by
angular frequency ωL. Indeed, even for angular frequencies below ωL, the transient response
of the harmonic component may be lightly damped. As an example, using the parameters
of Aside 7, we have set the harmonic component at 75% of ωL (i.e., k = 17). The result is
reported in Fig. A8.1, which clearly shows a lightly damped behavior.
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This problem can be easily attenuated compensating the delay of the feedback loop by
introducing a phase lead effect in the controller. As shown in Fig. A8.2, the phase lead φk is
added when the outputs of the synchronous frame regulators RkDC(s ) are transformed back
to the stationary reference frame coordinates. Using theorem (4.20), the relation between
synchronous reference frame regulators RkDC(s ) and stationary reference frame regulators
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RkAC(s ) becomes

RkAC(s ) = cos φk[RkDC(s − jkωo) + RkDC(s + jkωo)]
+ j sin φk[RkDC(s − jkωo) − RkDC(s + jkωo)] (A8.3)

If RkDC(s ) = KIk/s , (A8.3) becomes

RkAC(s ) =
∑
k∈Nk

2KIk

(
s − sin(φk )

cos(φk )

)
cos(φk)

s 2 + (kωo )2 , (A8.4)

which, for φk = 0, corresponds to (A8.1). The leading angle φk can be set equal to the delay
at frequency k of the transfer function Wp(s ). The results of this provision is described in
Fig. A8.3. Comparing this result with Fig. A8.1, we can clearly see the advantages of the
introduction of a phase lead angle φk .
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In order to understand the performance of the proposed controller in a typical active fil-
ter application, we have simulated a reference signal IOREF, which includes the funda-
mental component, the fifth and the seventh components, both with an amplitude equal
to 50% of the fundamental one. Accordingly, we have implemented a resonant con-
troller that includes the compensation of the fundamental fifth and seventh harmonic
components.

The gain of the resonant controller has been set so as to have a response time equal to
one fundamental period for all three harmonic components. The results are reported in Fig.
A8.4. The figure shows how the residual error is reduced to zero after about one fundamental
period, which is consistent with the specified dynamic response. As a comparison, we have



106 DIGITAL CONTROL IN POWER ELECTRONICS

simulated an ideal dead-beat current controller, which ensures reference tracking with a two-
sample delay, reporting the results in Fig. A8.5. Note that, at the end of the simulated time
interval, the residual error is still quite high, even if the dead-beat can be considered a very
fast current controller. Of course, if higher order harmonics were to be compensated (13th,
15th, etc.), the advantages of the resonant controller would be even greater than what the
results reported in this example show.
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The equivalence of the rotating reference frame PI controller with a proportional controller par-
allel connected to a tuned resonant filter suggests an alternative implementation of the controller
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that, not requiring the computation of Park’s transformation, may offer a significant reduction
of signal processing requirements for the control algorithm. Indeed, it is worth mentioning that
the implementation of stationary frame resonant controllers, instead of synchronous reference
frame controllers, has received, starting from the year 2000, a significant attention from several
research groups around the world, at least for those applications (UPS, PFC, active power fil-
ters, etc.) where the frequencies to be compensated are almost constant. Of course, the direct
implementation in the discrete time domain of resonant filters with zero or very small damping
factors requires some care during the discretization process, in order to avoid warping effects
that could shift the resonant frequencies, moving them out of the desired locations.
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C H A P T E R 5

External Control Loops

In the previous chapters we have presented some examples of current control loop implemen-
tations, both for single- and for three-phase voltage source inverters. We have discussed how to
design a PI current controller in the continuous time domain and how to turn it into a discrete
time, or digital, controller. We also introduced the principles of dead-beat, predictive current
control. In all these cases, we have seen how the presence of a current control loop actually turns
the VSI into a controlled current source with predetermined speed of response and reference
tracking accuracy.

However, there are several applications of VSIs where the implementation of a current
control loop is just the first step to be taken. For example, in some cases, the control objective is
not simply to develop a controlled current source, but rather to turn the VSI into a controlled
voltage source. In other cases, the controlled current source is automatically regulated by an
external control loop that is driven by another dynamic variable in the system, like, for instance,
the rotational speed of an electrical motor. In these circumstances, the current loop becomes
the most internal control loop in a multiloop arrangement of the VSI controller.

The purpose of this chapter is to present an overview of multiloop control organizations,
discussing some examples of external control loop design. Because a controlled current source
can be used for a very large spectrum of different applications, it is practically impossible to deal
with all. As we did before, on this occasion we will as well limit our presentation to some typical
application cases. In addition, we will limit the discussion to single-phase VSIs, since we have
shown, in the previous chapter, how the results can be almost directly applied to three-phase
converters as well.

5.1 MODELING THE INTERNAL CURRENT LOOP
The setup of an external control loop around an existing current loop, typical of all multiloop
VSI control arrangements, poses questions similar to those we have considered when, discussing
the design of a current controller, we first tackled the static and dynamic modeling of PWM.
Once again, independent of the nature and purposes of an external controller, its design requires
a suitable model of the internal loop, taking into account static gain and dynamic response.
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The derivation of this model is, in practice, simplified by the fact that, in deriving the
current controller, all the involved transfer functions, associated with the different static and
dynamic components of the system under consideration have been identified and calculated,
even if, in some cases, under simplifying assumptions. From this standpoint, the designer’s task
is now easier, since he or she has to deal with a completely linearized dynamic system.

Any dynamic system analysis software allows us to automatically calculate the closed
loop transfer function of a given feedback controlled system, once the various involved transfer
functions are specified and their interconnection is suitably described by the user’s program.
This is indeed a very useful way of checking one’s results, but we do not recommend this as a
design approach. The problem is that the resulting dynamic model is typically of high order,
dependent on all the system parameters and affected by all the approximations that were used
in the derivation of the single transfer functions. Its practical usefulness for the design of the
outer loop is therefore limited.

To effectively design the external loop what the designer actually needs is a first-order
simplified model of the internal loop, simple enough to be managed by pencil and paper calcu-
lations and, nevertheless, accurate enough to reproduce the system’s dynamics in a reasonably
faithful way.

In the large majority of cases, this simplified approach is sufficiently accurate to allow the
successful design of any external loop. In some particular cases however, for example when the
dynamic requirements for the external loop are demanding, the analytical, exact calculation of
the internal loop response may be the only option available to the designer.

We can visualize the organization of a multiloop digital controller considering Fig. 5.1. As
can be seen, an additional dynamic variable, indicated as the external variable XO, is introduced,
which, after proper conditioning and sampling, is processed by a digital controller. The output
of the external variable controller is the reference signal for the current controller, which is
therefore driven by the external control loop. The shaded area in Fig. 5.1 represents the part
of the system that is controlled by the current regulator and that, consequently, will be seen by
the external loop as a single, lumped, dynamic system. Please note that this includes, as well,
the holder delay effect embedded in the PWM modulator that, consequently, will not affect the
external loop design.

The simplest modeling approach consists in the derivation of the block diagram of Fig. 5.2.
As can be seen, the blocks appearing in Fig. 5.1 and pertaining to the external control loop are
explicitly indicated; the current controller, the inverter, and the load model are instead lumped
in the current control block. Of course, to close the feedback loop, the definition of an additional
transfer function that relates the converter output current with the external control variable has
to be specified as well.
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FIGURE 5.1: Typical organization of a multiloop digital controller.

While the latter transfer function depends on the particular application, and we will
examine some particular cases in the following sections, the current control block model is
independent of anything external to it. We can choose different model structures, based on the
type of current controller we have actually implemented. An example that is generally apt to
model PI or other conventional regulators is as follows,

IO

IOREF
(s ) = G0

1
1 + s τCC

, (5.1)

Signal
conditioning

IOREF External 
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( )s
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IO XO

-+

Signal
sampling

FIGURE 5.2: Block diagram of the external loop digital controller.
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which can be used in the case where we proceed with the external controller synthesis in the
continuous time domain and, later, apply some form of discretization. Instead, if the external
controller synthesis has to be performed directly in the discrete time domain, we can consider
a discrete time equivalent of (5.1), i.e.,

IO

IOREF
(z) = Z

[
G0

1
1 + sτCC

]
, (5.2)

that may represent the discretization of (5.1), obtained by following any of the methods we have
mentioned in Chapter 3. Please note that, in this latter case, the transfer function XO

IO
(s ) has to

be discretized as well.
The determination of gain and pole position for (5.1) and (5.2) is generally simple. The

gain depends on the presence of possible scale factors in the current controller implementation.
Typically, when the internal variables are represented fractionally, with unity as the full scale
range value, gain G0 equals the inverse of current transducer gain. Without loss of generality,
we will assume that this is the case in the following examples. As far as the dynamic part of (5.1)
is concerned, the idea is again to simply model the response delay of the current control loop. If
current loop design has been properly performed, (5.1) represents a reasonable approximation
of the closed loop gain for any time constant τCC chosen according to the following relation,

τCC = 1
2π fCL

, (5.3)

where fCL represents the crossover frequency considered for the current loop.
A different approach can be used in case the current controller has been implemented

as a digital predictive regulator. In that case, the simplest approximation of the current loop is
represented by

IO

IOREF
(s ) = G0

1 − s TS

1 + s TS
, (5.4)

where the static gain is identical to that in (5.2), while the dynamic term is the first-order Padé
approximation of the two modulation period delay of the current controller. Of course, for the
dead-beat current controller the discrete time model equivalent to (5.4) is

IO

IOREF
(z) = G0

z2
, (5.5)

which, in this case, contains no approximations. With the exception of (5.5), the modeling
approaches we have just presented are fast and practical first-order approximations of the current
loop: therefore, it is always recommendable to verify their validity comparing them to a plot
of the exact closed loop current control transfer function, calculated by any of the available
dynamic system analysis software packages.
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FIGURE 5.3: Typical organization of a single-phase UPS with digital control.

5.2 DESIGN OF VOLTAGE CONTROLLERS
A typical application field of VSIs is that of uninterruptible power supplies (UPSs). In this case,
the voltage source inverter is used to implement a high-quality, controlled voltage source. The
technology of UPS systems involves a whole lot of other fundamental issues, like, for example,
those related to energy storage and to the management of the interaction with the utility grid
[1, 2]. For the purpose of this textbook, we will limit the discussion to some possible, and basic,
strategies for the implementation of digital controllers of the UPS inverter stage. According to
what we have illustrated in the previous section, the typical controller organization is multiloop.
The internal current control loop will be driven by an external voltage loop, as in the schematic
diagram shown in Fig. 5.3 [3, 4].

There are several aspects related to Fig. 5.3 that deserve further clarification. In the first
place, the structure of the inverter output filter has been modified with respect to what we
have considered so far. The reason for this modification is that, in order to offer a relatively
low impedance to external loads, schematically represented by a current source in Fig. 5.3, the
converter output must be capacitive, at least in the frequency range of interest, which in the
case of UPS is set around the line frequency. In addition, the output capacitor provides, at least
partially, load power factor correction, and gives to the UPS an energy storage capability to
sustain the load, in the absence of the primary source of energy, for a predetermined amount of
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time, known as hold-up time. For the above reasons, the UPS inverter output filter will always
have the configuration of Fig. 5.3.

It is worth noting that, in real cases, the load arrangement can be much more com-
plex, e.g., including a transformer, so that the configuration of Fig. 5.3 represents just a sim-
plified case study that will allow us a relatively easier discussion of the basic control design
aspects.

A second important issue related to the considered UPS system configuration is the
motivation for the presence of a current control loop. One could observe that, provided the
load structure is as shown in Fig. 5.3, there is actually no need for a current loop. The direct
control of the output voltage could be implemented as is done, for instance, in dc/dc converters,
when direct duty-cycle control is implemented. This approach is of course perfectly possible
and sometimes practically adopted too. Its main drawbacks are related to the protection of the
inverter from accidental events like, for example, output short circuits. In this event, in order to
avoid a potentially fatal overcurrent condition for the inverter switches, it is common practice
to implement some form of current limitation mechanism that requires the implementation
of current sensing and some form of, at least analog, signal processing. Therefore, there is
no significant cost reduction in the removal of the current loop. In addition, the presence of
an internal current loop allows us to decouple the second-order output filter dynamics. This
fact, differently from what one could expect, does not necessarily offer an advantage in the
achievement of a faster dynamic response. However, the modularity, flexibility, higher tolerance
to parameter variations, and ease of design that characterizes multiloop solutions make this the
preferred strategy in commercial UPS designs.

5.2.1 Possible Strategies: Large and Narrow Bandwidth Controllers
The possible strategies for the implementation of a UPS output voltage controller can be roughly
divided into two different categories: (i) large bandwidth controllers and (ii) narrow bandwidth
controllers.

The large bandwidth approach is aimed at the instantaneous compensation of any deviation
of the output voltage from its reference. A typical problem in UPS systems is the limitation of the
output voltage waveform harmonic distortion within acceptable, product standard compliant,
levels. This is a particularly hard task when nonlinear distorting loads, such as diode bridge
rectifiers with capacitive output filters, are connected to the UPS output. Large bandwidth
output voltage controllers try to achieve the goal by extending the regulation bandwidth so much
as to make it include a significant number of fundamental frequency harmonics (10 or more).
We will see in the following how this can be a very demanding control specification. Clearly,
if this is achieved, the compensation of unwanted harmonic components of the output voltage
will be achieved automatically, at least up to the regulator bandwidth. Typical implementations
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of this concept are linear PI regulators and dead-beat controllers. We will discuss both in the
next section.

The narrow bandwidth approach is based on the following consideration. Examining the
output voltage waveform distortion problem, one can realize that what is really needed is not the
instantaneous compensation of all the undesired harmonic components. A harmonic compen-
sation action that settles in a few fundamental frequency periods is actually enough to comply with
product standards, provided that a relatively fast control of the fundamental harmonic compo-
nent and a comparatively fast response to load variations is guaranteed. The implementation
of this concept can be very diverse, ranging from repetitive-based controllers to the adoption
selected harmonic compensation by means of tuned filters. We will see some examples of these
strategies in the following section.

5.3 LARGE BANDWIDTH CONTROLLERS
This section is dedicated to the presentation of basic implementations of two output volt-
age control strategies for UPS systems, namely PI control and dead-beat control. The design
approach, for both cases, closely resembles the one we have been following for the current con-
troller implementation, where we have first come across these types of regulators. Therefore, in
the following, we will discuss in detail only the aspects that are peculiar to voltage controllers,
being the generalities identical to those described in Chapter 3.

5.3.1 PI Controller
The implementation of a digital voltage PI controller is based on the general block diagram of
Fig. 5.2, where we are now in a position to determine all the involved transfer functions. Prior
to that, we need to summarize the main characteristics of the circuit of Fig. 5.3. We assume that
the UPS is built around our original case study VSI. The complete list of converter parameters
is given by Table 5.1.

As can be seen, only some of the parameter values are the same as originally re-
ported in Table 2.1. Indeed, the output voltage specifications, relatively to both amplitude
and frequency, have been chosen, in the present case, so as to determine the operating con-
ditions that are typical of UPS systems in use in various non-European countries around the
world.

The design of the voltage controller requires the knowledge of the current controller
dynamic characteristics. We can either assume that the current controller has been designed as in
Chapter 2 and successively discretized or that we are dealing with a predictive current controller,
of the type described in Chapter 3. One could point out that both these current controllers have
been designed assuming a different inverter load configuration, in particular assuming the
load voltage to be an exogenous input of the system and, as such, totally independent of the
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TABLE 5.1: UPS Inverter Parameters

Rated ouput power, PO 1000 (V A)
Phase inductance, LS 1.5 (mH)
Output capacitor, CS 68 (μF)
Output voltage, VO 110 (VRMS)
Output frequency, fO 60 (Hz)
DC link voltage, VDC 250 (V)
Switching frequency, fS 50 (kHz)
Current transducer gain, GTI 0.1 (V A−1)
Voltage transducer gain, GTV 0.02 (V V−1)

system’s state variables (i.e., from the inverter output current IO). It is immediate to see that,
for the circuit of Fig. 5.3, this is no longer the case. However, it is possible to show that, for
a typical UPS design, what we have seen in Chapters 2 and 3 is still valid and can be applied
again.

A simple demonstration of this statement can be found in Fig. 5.4. The figure shows
the Bode plot of the current control open loop gain, in the case of a PI controller designed
exactly as outlined in Chapter 2, Aside 2. The plot is done both for the original load configu-
ration (without capacitor) and for the new load configuration, including the output capacitor.
The figure clearly demonstrates that at the crossover frequency, and around it, the magnitude
and phase of the two open loop configurations coincide. This is not casual at all: in general,
the output capacitor of a UPS inverter is sized to guarantee a certain (typically 50%) com-
pensation of possible inductive loads (typical minimum load cos φ is 0.8), thus reducing the
apparent load power the inverter has to generate. Because of that, differently from what hap-
pens in a dc/dc converter, in the UPS, the output capacitor is usually designed to operate
at the line frequency. This implies that the inverter’s second-order output filter has indeed a
very low natural resonance frequency (about 500 Hz, in our example). This is extremely low
with respect to the switching frequency, which implies that the filter impedance, close to the
switching frequency, i.e., close to the typical desired crossover frequency of the current loop,
is almost purely inductive. Therefore, designing a PI current controller on the second-order
filter or designing it on the pure inductor, shorting the output capacitor, makes no practical
difference.

The case of the predictive controller requires a little more caution, but we will now
show that the same conclusion can be reached. In order to do that, we consider a state space
linear modeling of the second-order filter (Fig. 5.3), which, recalling Aside 3, can be simply
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FIGURE 5.4: Bode plot of the current control open loop gain, with (solid line) and without (dashed
line) output capacitor. The controller parameters are those calculated in Aside 2.

represented in the following matrix form,

d
dt

x(t) = Ax(t) + B1V OC(t) + B2 ILOAD(t), (5.6)

where x(t) = [V O(t) I O(t)]T is the state vector, average inverter voltage V OC and load current
ILOAD are considered system inputs, and

A =
[

0 1/Cs

−1/Ls 0

]
B1 =

[
0

1/Ls

]
B2 =

[
−1/Cs

0

]
. (5.7)

Assuming, as we have done in Chapter 3, that the inverter voltage V OC and load current
ILOAD are constant between sampling instants (zero-order hold equivalence of the system), the
discrete time dynamic equations can be written as

x(k + 1) = � x(k) + 
V V OC(k) + 
I ILOAD(k) (5.8)
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where

� = eATs =
⎡
⎣ cos(ωo Ts)

1
ωo CS

sin(ωo Ts)

− 1
ωo LS

sin(ωoTs) cos(ωo Ts)

⎤
⎦ ≈

⎡
⎢⎣ 1

Ts

CS

− Ts

LS
1

⎤
⎥⎦ , (5.9a)


V = (
eATs − I2

)
A−1 B1 =

⎡
⎣ 1 − cos(ωo Ts)

1
ωo LS

sin(ωoTs)

⎤
⎦ ≈

⎡
⎣ 0

Ts

LS

⎤
⎦ , (5.9b)


I = (
eATs − I2

)
A−1 B2 =

⎡
⎣− 1

ωo CS
sin(ωoTs)

1 − cos(ωoTs)

⎤
⎦ ≈

⎡
⎣− Ts

CS
0

⎤
⎦ . (5.9c)

In (5.9), I2 is the 2 × 2 identity matrix, TS is the sampling period, and ωo is the angular
resonance frequency of the second-order L–C filter. Under the assumption that the sampling
frequency is much greater than the resonance frequency of the L–C filter (i.e., ωo · TS � 1),
the approximations shown in (5.9a)–(5.9c ) hold. Now, if we consider the second row of each
matrix, we can immediately recognize that the current state equation implied by (5.9) is as
follows,

I O(k + 1) = I O(k) + TS

LS
· [V OC(k) − VO(k)

]
, (5.10)

which, once ES is substituted by VO , is exactly coincident with (3.19). Once again, the predictive
controller we can design around (5.10) is exactly the same as we have designed around (3.19).

In summary, thanks to the property of the considered topology that guarantees ωo · TS �
1, all we have mentioned in Chapters 2 and 3 is still valid and can be directly applied to the
present case. Therefore, the design of the PI voltage controller can be developed assuming that
one of the solutions discussed in Chapters 2 and 3 is used in the current loop.

As an example, we will now discuss the case where the current controller is a dead-beat
one. Of course, the same method that we are now going to present can be applied in case a PI
or another kind of controller is considered for the current loop.

We know, from Chapter 3, that the dead-beat current controller is dynamically equivalent
to a two modulation period delay. The static gain can be, without loss of generality and from
the voltage loop controller’s standpoint, assumed to be equal to the inverse of current transducer
gain. Recalling the discussion of Section 5.1 and in particular (5.4) and Table 5.1, we can
consider the transfer function for the closed loop current controller to be equal to

IO

IOREF
(s ) = 1

GTI

1 − s TS

1 + s TS
, (5.11)
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FIGURE 5.5: Block diagram of the voltage loop digital PI controller for the UPS of Fig. 5.3.

while that of the inverter load (Fig. 5.3) can be easily given by

VO

IO
(s ) = 1

s CS
. (5.12)

We can now build the block diagram around which the design of the PI voltage controller
can be developed. This is shown in Fig. 5.5.

As can be seen, the control problem we are now considering is very similar to that
considered in Chapter 2 for the continuous time PI current controller design. An important
difference is that the holder delay effect, for the reasons explained above, has not to be considered
in this design.

The procedure to solve this problem, determining the PI controller gains KP and KI is
presented in Aside 9. As can be seen, it closely follows the one we considered in Chapters 2 and
3: first we determine a continuous time voltage PI controller that, later, we turn into a digital
one by discretization. The PI voltage controller design is therefore concluded by the calculation
of the discrete time equivalent of both gains. As usual, the final step we need to take is the
simulation of the complete dynamic system, with current and voltage regulators. An example
of the results obtained for our test case is shown in Fig. 5.6.
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Aside 9. Example of a PI Voltage Controller Design for a UPS Application

The voltage PI controller gains can be determined once the desired loop bandwidth, fCL,
is specified. For a UPS application, in order to achieve a satisfactory control of the voltage
waveform in the presence of distorting loads, we can say that, as a rule of thumb, this
should be, at least, 15–20 times the line frequency, i.e., from 900 Hz to 1200 Hz in our
example.

While this is easy to obtain when the switching frequency is relatively high, as it is in
our case, and the current controller is a fast one, like the one we are considering here, in
the opposite case, i.e., when a low switching frequency application is considered or when
the internal control loop is relatively slow, it may not be too easy to achieve the desired fCL

values.
However, once fCL is known, we can consider the open loop gain expression and force

its magnitude to be equal to one at the desired crossover frequency. From Fig. 5.5 the open
loop gain is found to be

GOL V(s) = GTV

GTI

1 − s TS

1 + s TS

1
s CS

(
KP + KI

s

)
. (A9.1)

It is worth noting that, differently from the current controller case, no delay effect related to
the holder has been taken into account. This is possible because the internal current control
loop has been designed to compensate for that. Therefore, the only dynamic delay the voltage
controller has to compensate is that of the current controller.

Given (A9.1), the first condition we need to satisfy, by suitably choosing KP and KI, is as
follows,

GTV

GTI

√
K 2

I + (ωCL KP)2

ω2
CLCS

= 1, (A9.2)

where, as usual, ωCL = 2π fCL.The second constraint we can impose is requiring a minimum
phase margin, phm, for the loop gain at the crossover frequency. In order to get a reasonable
damping of the dynamic response, this can be set equal to 60◦. Consequently, we find the
following additional condition:

−180◦ + phm = −180◦ − 2 tan−1(ωCLTS) + tan−1
(

ωCL
KP

KI

)
. (A9.3)
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The solution of the system of equations (A9.2) and (A9.3), considering the parameter values
listed in Table 5.1 and imposing fCL = 1800 Hz, provides us with the following values for
the PI gains: KP = 3.83, KI = 3.42 × 103 (rad s−1).

The conversion of the continuous time PI into a discrete time one is simply obtained
applying the following relations: {

KI dig = KI · TS

KP dig = KP.
(A9.4)

Finally, it is worth adding a comment on the calculation delay associated with the voltage
controller. Typically, this can be considered equal to zero, because, if the controller hardware
has been correctly chosen, the computation of the current reference sample can be done within
the same control period where the duty-cycle is updated. In other words, it should always be
possible to provide the current controller with the most recent sample of the current reference,
without the need to wait for the following modulation period. The minimum requirement
is, of course, that the sum of the durations of the voltage controller and current controller
algorithms does not exceed one sampling period.

As can be seen, the steady-state reference tracking capabilities of the voltage controller are
pretty fair. A steady-state sinusoidal tracking error is recognizable, that, as in the current loop
case, is due to the finite amplification the PI controller offers at the reference frequency. This
problem can be solved by modifying the controller structure, as will be explained in Section 5.4,
or by adding some form of feed-forward compensation, e.g., of the capacitive component of
the inverter output current.

To test the voltage PI in dynamic conditions as well, we have considered a typical UPS test
case, i.e., step load disconnection. At the instant when the inverter output current is maximum,
i.e., the maximum energy is stored in the LS inductor, the load is disconnected. This causes an
immediate output voltage error (negative) that needs to be corrected by the voltage controller.
We can therefore evaluate the controller dynamic properties. It is worth noting that neither the
current loop nor the voltage loop enters saturation during the test: accordingly, the behavior
illustrated by Fig. 5.6 can be considered a consequence of the regulator properties, not influenced
by saturation effects or other system nonlinearities. The regulation bandwidth determines the
significant voltage error peak at the instant of the load step change. This is recovered in a
relatively small fraction of the reference period, with adequate damping, i.e., without ringing
or persistent oscillations.
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5.3.2 The Predictive Controller
In Chapter 3, we have discussed the dead-beat, predictive current controller. We have seen how
this represents the highest performing current controller, determining a dynamic response delay
for the current loop that is equal to two modulation periods. It may be quite obvious to ask if,
using the same strategy, one could get the same high performance level for the voltage controller
as well. The answer is in the affirmative: it is indeed possible to implement a predictive controller
for the voltage control loop and get again a very fast dynamic performance. Following this
approach, it is possible to set up a multiloop controller based on decoupled current and voltage
predictive regulators, whose dynamic response delay turns out to be equal to four modulation
periods. This solution, which we identify as the multiloop predictive controller, will be described
in the next section.

However, for the sake of completeness, we have to mention that the more direct and
well-known application of dead-beat control to the converter structure of Fig. 5.3 does not
actually follow the multiloop approach. In this case, the direct pole allocation and dynamic state
feedback are applied to the second-order system described by (5.9). A multivariable controller
is consequently achieved, whose dynamic response delay is equal to three modulation periods,
faster than the previously described one. However, as it almost always happens, the price to pay
for the speedup is not negligible. The absence of a current control loop makes the management of
some practical operating conditions, such as overload or output short circuit, rather complicated.
In the last part of this section, we will discuss the main features of this controller as well.

5.3.2.1 The Multiloop Implementation
The schematic organization of the multiloop predictive controller [5] is shown in Fig. 5.7.
As can be seen, the block diagram is complicated by the presence of three functions, i.e., the
capacitive current feed-forward (A), the reference current interpolator (B), and the load current
estimator (C), which can be considered ancillary. As it will be explained a little further on, the
purpose of these blocks is simply to improve the static and dynamic behavior of the regulator,
but, for now, we can neglect them and focus on the main controller components.

Doing that, it is immediate to recognize in Fig. 5.7 the same basic organization of a mul-
tiloop controller shown in Fig. 5.3. Of course, Fig. 5.7 is based on discrete time representations
of both controllers and the converter load. Because of that, no sampling block is explicitly rep-
resented in the figure. For the same reason, the load transfer function is represented as ZCS(z),
which stands for the discrete time version of (5.12).

Considering now the current controller, we will just say that this is designed exactly
following the procedure we described in Chapter 3. After the discussion of Section 5.3.1, we
know that this is perfectly applicable to the present case, as the derivation of (5.10) clearly
shows.
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The voltage controller can be designed almost identically, considering the first row of the
state space description (5.9). This corresponds to the following state equation,

V O(h + 1) = V O(h) + TS V

CS
· [I O(h) − ILOAD(h)

]
, (5.13)

which, as can be seen, presents exactly the same structure of (5.10). Please note that, in order
to keep the notation simple and clear, we denoted the considered sampling instant as h · TS V,
to highlight that the sampling process for the voltage loop can be operated, in general, with
a different sampling period, TS V, with respect to that of the current loop, TS. Following the
same reasoning presented in Chapter 3, we can now find the dead-beat control equation for the
voltage loop. Once again, this presents exactly the same structure as that derived for the current
loop, i.e.,

IOREF(h + 1) = −IOREF(h) + CS

TS V
· [VOREF(h) − V O(h)

] + 2 · ILOAD(h), (5.14)

where the load current is assumed to be a relatively slowly varying signal and, consequently, the
approximation ILOAD(h + 1) ∼= ILOAD(h) is considered.

It is essential to underline that the derivation of (5.14) actually hides a very important
assumption; that it is possible and correct to identify the current reference signal with the actual
inverter output current by the end of every given control period. This assumption is not always
correct: in particular, it is surely not correct if the sampling process for the voltage loop and
that for the current loop have the same period duration. In this case, the dynamic delay of
the current loop, which requires two periods to make the output current equal to its reference,
undermines the system stability. In contrast, if the sampling frequency for the voltage loop is set
equal to one-half of that used for the current loop, the delay, from the voltage loop standpoint,
becomes ineffective and the identification of the current reference with the actual inverter output
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current is correct. Therefore, the controller organization of Fig. 5.7 actually requires TS V = 2TS.
Because of that, the dynamic response delay of the voltage controller, which will be equal to
two control cycles, as it was for the current controller, is actually equivalent to four modulation
periods.

Several refinements are possible to improve the controller operation with respect to what
can be achieved simply by programming (5.14) as the voltage loop control equation. In the first
place, it is possible to feed-forward every known component of the inverter output current,
like the current in the output capacitor CS, that is easily precomputed from the voltage refer-
ence signal, once the output capacitor value is known. This is exactly what block A of Fig. 5.7
does. The output current has another component, i.e., the load current, that, in general, cannot
be precalculated and, therefore, should be measured. Nevertheless, a simple estimation equa-
tion can be implemented, exactly as it was done for the current controller, in order to avoid
this measurement, which can be sometimes problematic. The basic estimation equation is as
follows,

ÎLOAD(k − 1) = −CS

TS
· [V O(k) − V O(k − 1)] + I O(k − 1) (5.15)

which can be actually improved by adding a cascaded low-pass filter, so as to remove possible
instabilities or measurement noise. The implementation of (5.15) and of the low-pass filter is
essentially the function of block C in Fig. 5.7.

Once, thanks to blocks A and C, the capacitive and load currents are obtained, the
function of the voltage controller is only to compensate for the residual feed-forward and
estimation errors. Of course, the voltage control equation (5.14) can be rewritten accordingly,
obtaining

� IC(h) = CS

2 · Ts
· [VOREF(h) − V O(h)] − � IC(h − 1), (5.16)

which explains why, in Fig. 5.7, the output of the current controller is not IO REF, but the
quantity �IC .

The function of block B is a little more complicated to explain. We have seen before
that the voltage control equation is computed at half the frequency of the current control. This
means that the current controller reacts to the reference signal generated by the voltage controller
as to a stepwise function, updated every two modulation periods. This determines persistent
high-frequency oscillations in the inverter output current. In order to eliminate this effect, the
interpolator block B of Fig. 5.7 generates an extra reference signal sample to feed the current
controller in those control periods when the voltage loop would not update the reference. This
makes the reference signal for the current controller practically equivalent to a continuous time
signal, correctly sampled with TS period, and thus eliminates the step response dynamics from
the output current.
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FIGURE 5.8: Dynamic response of the digital dead-beat voltage controller: (a) response to load step discon-
nection; (b) details of the previous figure.

The provisions we have briefly outlined make the UPS controller of Fig. 5.7 quite ef-
fective. We can see the typical performance achievable with this controller in Fig. 5.8. It is
interesting to compare Figs. 5.8 and 5.6, since they were obtained for the very same test con-
ditions.

As can be seen, there is a significant difference in the two controllers’ performance.
Firstly, the dead-beat voltage controller offers a smaller residual steady-state tracking error at
the fundamental frequency, which turns out to be about 50% smaller than that achieved by the
PI. Additionally, its dynamic performance is much faster, as is clearly visible if one compares
the error trajectory after the load transient. This readiness guarantees both a smaller voltage
overshoot and a faster recovery of the nominal voltage trajectory.

5.3.2.2 The Multivariable Implementation
The dead-beat controller is more often implemented as in [6–8], i.e., by applying state feedback
theory to the second-order dynamic system represented by (5.9). The approach practically
replicates the one we have followed in Chapter 3, Aside 5, with the remarkable difference that
we are now dealing with a two-component state vector. We can describe the solution considering,
at first, the simpler and ideal case where the computation delay is neglected. Accordingly, the
basic static state feedback implementation is as follows,

x(k + 1) = � x(k) + 
V K x(k) = �Fx(k) (5.17)

where the system input V OC has been replaced by K · x, and K = [
KV O

KI O

]
is the feedback

gain matrix. Consequently, the closed loop system is now characterized by a new state matrix
�F = � + 
V K , whose eigenvalues can be properly allocated by suitably choosing the gains
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KV O
and KI O

. The computation is a little involved, but it is possible to see that the following
values,

kV O
= 1 − 2 cos(ωo Ts)

2 − 2 cos(ωo Ts)
kI O

= −ωoLS
1 + 2 cos(ωo Ts)

2 sin(ωo Ts)
(5.18)

achieve the desired results; i.e., both the closed loop system eigenvalues are relocated in the
origin of the complex plane. It is interesting to note that Eq. (5.18) is given for the original
system matrixes, i.e., without any approximation. It has therefore general validity. More subtly,
if we tried to operate the closed loop compensation of the system from the V OC input, after the
system is dynamically decoupled and the approximated system matrixes are obtained, we would
encounter a serious problem: the approximated dynamic system is no longer state controllable
from the V OC input. This reflects the physical fact that, in the hypothesis of a decoupled system,
the output voltage V O no longer depends on the average inverter voltage, but only on the average
inverter current.

Therefore, the approach we are discussing here is only meaningful if we do not take into
account the dynamic decoupling hypothesis. Please note that this could be the only correct way
of synthesizing a dead-beat controller in all those cases where the second-order output filter
does not guarantee that the condition ωo · TS � 1 is satisfied.

In conclusion, the organization of a state feedback loop with gains given by (5.18) guar-
antees a dead-beat response for the closed loop system. Unfortunately, the practical implemen-
tation of this solution is not possible, because of the computation delay, which we have not
taken into account. In order to do that, we need to follow again the same approach of Aside
5, i.e., considering a dynamic state feedback implementation. The details of the procedure are
given in Aside 10.

Before we conclude our presentation of the multivariable dead-beat controller, we would
like to discuss the results of its numerical simulation, shown in Fig. 5.9. In particular, we would
like to compare Figs. 5.9 and 5.8.

As can be seen, there is no dramatic performance improvement in the considered im-
plementation. This is because although, in principle, the multivariable dead-beat controller
is capable of a three modulation period response delay, i.e., the fastest theoretically possible
dynamic response, the need for the reference signal reconstruction, as explained in Aside 10,
partially cancels this advantage. Therefore, the achieved dynamic performance is practically
comparable to that offered by the multiloop dead-beat implementation. However, we need
to highlight, once again, that the multivariable implementation is actually the only possible
solution for dead-beat control of second-order output filters with a relatively high resonance
frequency.
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FIGURE 5.9: Dynamic response of the digital dead-beat voltage controller: (a) response to a load step
disconnection; (b) details of the previous figure.

Aside 10

We consider the discrete time equivalent model for the UPS system given by (5.9), which
we recall here for clearness, i.e.,

x(k + 1) = �x(k) + 
VV OC(k) + 
I ILOAD(k), (A10.1)

where x(k) = [
V O(k) I O(k)

]
T and

� =

⎡
⎢⎣ cos (ω0Ts)

1
ω0CS

sin (ω0Ts)

− 1
ω0LS

sin (ω0Ts) cos (ω0Ts)

⎤
⎥⎦ , 
V =

⎡
⎣ 1 − cos (ω0Ts)

1
ω0LS

sin (ω0Ts)

⎤
⎦ ,


I =
⎡
⎣− 1

ω0CS
sin (ω0Ts)

1 − cos (ω0Ts)

⎤
⎦ . (A10.2)

What we want is to build a dynamic state feedback controller around variable V OC, which
can be represented by the following equation,

V OC(k + 1) =
[

K1 K2

]
(xREF(k) − x(k)) + K3V OC(k), (A10.3)

where gains K1, K2, and K3 have to be determined and xREF(k) =
[

VOREF(k) IOREF(k)
]T
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is the state reference trajectory. We can now determine the augmented state matrix that
corresponds to the new dynamic system, made up by (A10.1) and (A10.3). It is immediate
to find that this is given by

�A =

⎡
⎢⎣�11 �12 
V11

�21 �22 
V21

−K1 −K2 K3

⎤
⎥⎦ . (A10.4)

As we did in Aside 4, we now need to calculate the K1, K2, and K3 gain values, so as to force
the eigenvalues of matrix �A to move to the origin of the complex plane. Once again, this
very simple idea requires some mathematics; however, after that, it is possible to find that
the following values

K1 = −1 + 2 cos (ω0TS) − 4 cos2 (ω0TS)
2 [1 − cos (ω0TS)]

,

K2 = − ω0LS

2 sin (ω0TS)

[
1 − 2 cos (ω0TS) − 4 cos2 (ω0TS)

]
, (A10.5)

K3 = −2 cos (ω0TS) ,

solve the problem. Therefore, substituting (A10.5) gains into (A10.3) control equation, we
get the desired multivariable dead-beat controller.

It is important to underline that, differently from the multiloop implementation, in the
multivariable dead-beat controller, the computation of the current reference trajectory is not
automatic, i.e., inherent in the controller structure. This means that we have to explicitly
determine the reference current from the voltage reference trajectory, that is, of course given,
and from other system variables. The standard procedure is to precompute the capacitive
current component of the output current from the voltage reference and either measure or
estimate the load current. Estimation techniques, e.g., based on disturbance observers [9, 10],
can be implemented that allow one to save the load current measurement. However, in that
case, the observer dynamics are responsible for a certain increase in the response delay of the
controller.

We conclude this brief discussion of dead-beat voltage controllers observing that, in recent
times, a significant research effort has been focused on this control technique. Therefore, several
technical papers can be found where this subject is treated in detail and possible refinements or
different implementation strategies are presented. The interested reader may take advantage of
references [6–10] as far as the multivariable implementation is concerned. Instead, additional
details on the multiloop dead-beat controller implementation can be found in [5].
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5.4 NARROW BANDWIDTH CONTROLLERS
In this section we present a summary of two very popular narrow bandwidth voltage control
strategies, frequently employed in UPS systems. These are the repetitive-based voltage controller
and, once again, the rotating reference frame voltage controller. The former is based a totally
new concept we never encountered before, and the latter, instead, is almost the direct extension
of what we have discussed in Chapter 4 for the current loop implementation. Essentially for this
reason, we will here discuss a different implementation strategy for the same concept, which is
based on DFT (discrete Fourier transform) filters.

5.4.1 The Repetitive-Based Voltage Controller
The concept of repetitive control originates from the internal model control principle. For
obvious reasons, we will not present here any of the numerous theoretical issues related to
internal model control and, in particular, to the derivation, under general assumptions, of
repetitive controllers. The interested reader can find a very good treatment of these topics
in specialized textbooks like, for example, [11]. Instead, we would like to open our discussion
simply by describing the goal of any repetitive controller, which is to make the controlled system
output track a set of predefined reference inputs, without steady-state error. The theory shows
that, in general, the achievement of this result requires the stabilization of an augmented system,
where the dynamic representation, in terms of Laplace or Z-transform, of the reference signal
of interest, has been somehow added to the original system model. This can be, in some cases,
a quite complicated control problem.

However, in the particular case of sinusoidal reference signals, which represent exactly
what we are interested in, for the UPS output voltage control, the digital implementation of a
repetitive controller becomes relatively simple, requiring only the setup of a suitably sized delay
line and of a positive feedback loop [12, 13].

An example of the basic structure of a repetitive controller, organized for application
to the UPS external voltage loop, is shown in Fig. 5.10(a). According to the required con-
trol function, the error on the UPS output voltage, εV, represents the controller input, while
the controller output is represented by the current reference signal for the internal current
loop.

It may not be obvious to see why, once the closed loop system is stabilized, the configu-
ration of Fig. 5.10(a) necessarily implies zero reference tracking error with respect to sinusoidal
signals. The formal way to realize why and how this happens consists in computing the trans-
fer function that relates the controller input to the output and plot the frequency response.
What can then be found is a very interesting result: the controller transfer function presents
infinite gain at all frequencies that are integer multiples of a fundamental one. The fundamental
controller frequency is the one associated with the delay line duration. Therefore, if the delay
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FIGURE 5.10: (a) General implementation of the repetitive controller; (b) provisions to improve the
stability margin; (c) the considered implementation.

line duration is made equal to the desired output voltage frequency, the frequency response of
the repetitive controller will be approximately equivalent to the parallel connection of a bank
of resonant filters, each presenting infinite gain at one integer multiple of the output voltage
frequency.

As a matter of fact, this result can also be anticipated simply by referring to Fig. 5.10 (a)
and considering the delay line operation. Any signal that repeats itself exactly in the delay line
period gets infinite amplification. Therefore, all sinusoidal signals whose period is an integer
submultiple of the delay line period, M · TS, get infinite amplification. One way or the other,
we see that the controller structure of Fig. 5.10(a) is a practical means to boost to infinity the
open loop system gain at every harmonic up to the Nyquist frequency. From this it necessarily
derives a zero steady- state tracking error on the output voltage sinusoidal signal and on all of
its harmonics.

However, exactly for the same reason, this structure poses serious stability problems for
the system. Indeed, the infinite amplification of the highest order harmonic components of the
voltage error can reduce the control loop phase margin and undermine the controller stability.
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The basic reason is that, as we know, the internal current controller has a limited bandwidth.
Therefore, in order not to incur instability, the frequency content of the current reference signal
has to be limited accordingly.

Because of this, several additional provisions have been proposed for an effective practical
implementation of the repetitive controller. For example, in order to guarantee system stability,
some filters can be introduced in the scheme of Fig. 5.10(a), in the feedback path, F1(z), or in a
cascade connection with the repetitive controller, F2(z), or even both, as shown in Fig. 5.10(b).
The goal of these filters is exactly to limit the amplification of the high-order harmonics. In
addition, the stability of the repetitive controller has been shown to greatly improve if a delay
line of M − L samples is inserted at the output of the regulator. This is actually equivalent to
adding a phase lead of L samples for all the harmonic frequencies and has been shown [12] not
to change the gain at the harmonic frequencies, but just to increase the system phase margin.

In conclusion, the repetitive controller organization we are going to discuss, that sums up
all these considerations, is shown in Fig. 5.10(c), which is, of course, theoretically equivalent to
the scheme of Fig. 5.10(b) when F2(z) = 1.

In recent times, a lot of different voltage loop controllers built around the repetitive con-
troller structure of Fig. 5.10(c) have been proposed and applied. The different solutions try to
solve the typical problems that are often encountered in the practical application of repetitive
controllers. In particular, experience shows that it is normally quite difficult to achieve simul-
taneously a satisfactory steady-state voltage error compensation and an acceptable large signal
behavior from the repetitive controller in a stand-alone configuration. Stability can be obtained,
but due to the effects on the control loop phase of the high-frequency resonances in the con-
troller frequency response the phase margin is typically low, with a consequent unsatisfactory
performance during transients.

For this reasons, the repetitive controller is more typically employed in parallel connection
with a conventional regulator. In the scheme of Fig. 5.11, we can see a simple implementation of
this principle: a purely proportional controller is paralleled to the repetitive one. The motivation
for the considered controller’s organization is to have, in the steady state, the proportional
controller action joined by the repetitive controller’s one: the latter compensates the periodic
error components the former, because of its limited bandwidth, cannot eliminate, thus making
the residual tracking error practically equal to zero. In addition, as we will see, the solution
allows the designer to better control the loop phase margin. Therefore, it is generally possible
to guarantee a conveniently damped response to perturbations.

Seen from this standpoint, the repetitive controller can be considered as an optional func-
tion we can employ in parallel to a conventional controller anytime we need to improve its
steady-state performance. In the presence of periodic output voltage disturbances, like those
induced by nonlinear loads connected to the UPS output, this solution can greatly improve
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FIGURE 5.11: (a) Suggested repetitive-based voltage controller. The repetitive controller structure of
Fig. 5.10(c) is connected parallel to a conventional purely proportional controller.

the quality of the output voltage regulation. Of course, nothing can be gained from this con-
troller organization in the compensation of fast transients, like those determined by step load
variations.

The design of the parallel structure of Fig. 5.11 can be performed in two separate steps:
(i) design of the proportional regulator and (ii) design of the repetitive controller. The first step
is very similar to the standard PI design we have already described in Section 5.3.1 and Aside 9,
so we will not comment further on that. As far as the second step is concerned, we basically
need to determine (i) the value of parameter M, (ii) the value of parameter L, (iii) the value of
gain KREP, and (iv) the structure of F1(z).

The design of parameter M simply requires the determination of the ratio of the sampling
frequency and the fundamental output voltage frequency. Since M must be integer, this may
generally require the adjustment of the switching frequency to an integer multiple of the output
voltage fundamental. In our test case, the switching and sampling frequencies were adjusted to
48kHz, thus giving M = 800.

The design of the other parameters requires a careful consideration of the open loop gain,
and in particular of the system phase margin. In order to compute the loop gain, we can refer
to the block diagram of Fig. 5.12, where, once again, the basic organization of Fig. 5.5 can be
identified, with the important difference that all blocks are now discrete time and, consequently,
the ideal sampler block is no longer represented.

As described above, the repetitive-based controller is given by the parallel connection of
the purely proportional regulator and the repetitive controller of Fig. 5.10(c), whose transfer
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FIGURE 5.12: Repetitive-based voltage control loop. The scheme is used for the computation of the
open loop system gain.

function can be easily found to be equal to

REP(z) = KREP
z−M+L

1 − z−M F1 (z)
. (5.19)

In addition to this, Fig. 5.12 includes the current loop transfer function that, supposed
to be of dead-beat type, is given by the usual static gain and an ideal two period delay transfer
function. Finally, as we already did, we indicate by ZCS (z) the discrete time version of (5.12),
obtained by any discretization method. Based on this scheme, we can now compute the open
loop gain and suitably select the repetitive controller parameters so as to maintain the system
phase margin and crossover frequency unaffected, while achieving a significant gain boost at
least for the first output voltage harmonic frequencies.

The open loop gain is plotted in Fig. 5.13. As can be seen, with the chosen parameters,
the open loop gain of the repetitive-based controller is asymptotically equal to that of the purely
proportional one. The repetitive controller contribution on the magnitude is represented by
the gain peaks, located at integer multiples of the output voltage fundamental frequency and
by the small increase of the equivalent proportional gain that appears as an offset between the
two plots. The amplitude of the peaks has been limited in high frequency by using, as F1(z),
a moving average filter with 31 taps. This, together with a suitable choice of parameter KREP,
which in our example has been set equal to 2, has allowed us to achieve a phase margin at the
crossover frequency that is practically identical to that of the purely proportional controller, thus
avoiding any stability problem. In addition, no phase lead action was needed in the example we
are considering here, since the sampling frequency is relatively high with respect to the crossover
frequency. Finally, the effect on the loop phase determined by the moving average filter has been
compensated by reducing the number of taps in the delay line by 15. This provision is required
because the 31 tap moving average filter actually gives a contribution to the loop phase that is
equal to that of a 15 tap delay line. Therefore, the length of the delay line has to be reduced
accordingly, so as to keep the total phase lag of the feedback signal path to the correct value. If
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FIGURE 5.13: Open loop system gain for the repetitive-based controller.

this is not done, the frequency allocation of the resonant peaks could be affected and so could
be the effectiveness of the regulator.

One could point out that the computational effort required for the implementation of this
regulator is relatively high, typically calling for not a negligible amount of hardware resources.
We have seen that in our example a 800 tap delay line is theoretically required, which implies
a significant amount of memory. This limitation can actually be partially overcome by using
a Mc sample decimation factor, thus reducing the number of taps the delay line requires. In
the example reported hereafter, Mc = 10 and consequently the number of delay line taps M
has been reduced to 80, i.e., to 79 to take the moving average filter into account. Indeed, the
moving average filter F1(z) has been reduced to only 3 taps. Using this decimation factor the
dynamic performance was not affected significantly. One issue related to the adoption of sample
decimation is that the output of the repetitive control is updated only every Mc samples and is
seen by the proportional controller as a stepwise function. Thus, an interpolator (first-order hold,
low-pass filter, etc.) can be useful for the generation of a continuous waveform, especially for
higher Mc values. Indeed, the decimation rate can be even higher than what we have considered,
since its limit is, theoretically, only represented by the Nyquist frequency for the highest order
harmonic one wants to compensate. Of course, practical issues related to system stabilization,
i.e., its sensitivity to phase lag effects in the vicinity of the crossover frequency, actually compel
us to keep the decimation factor well below this theoretical limit.
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The operation of the repetitive-based controller has been simulated with the UPS model
already considered for testing the large bandwidth controllers. In order to better highlight
the merits of this solution we have considered a typical situation where a distorting load,
represented by a high crest factor diode rectifier with capacitive filter, is connected at the
UPS output. Because of the nonzero output impedance of the UPS, the load current peaks
determine a typical distortion of the output voltage waveform. The repetitive controller is able
to slowly compensate for this distortion, reducing it to a minimum in a relatively large number
of fundamental frequency periods. This is basically the situation depicted by Fig. 5.14. The
figure was obtained by applying, at first, only the proportional controller. The corresponding
voltage distortion is shown in Fig. 5.14(b). After a few fundamental frequency periods, at
instant t = 0.1 s, the repetitive-based controller is activated. Its operation generates a transient
that extends through several fundamental frequency periods. This is due to the fact that as
the controller reduces the voltage distortion, the crest factor of the load current progressively
increases. This typical regenerative effect, which is common to all uncontrolled rectifiers with
capacitive filter, is described by the right column of Fig. 5.14, where the inverter output current
and its reference are represented. In particular, comparing Fig. 5.14(c) with Fig. 5.14(e) and
Fig. 5.14(d) with Fig. 5.14(f ), it is possible to realize how the voltage waveform is corrected
by the controller, and to appreciate the effect this causes on the load current. In the end, a
new steady state is reached, where the voltage distortion is strongly attenuated, even if the load
current crest factor has significantly increased.

As Fig. 5.14 clearly demonstrates, the performance of the repetitive-based controller
can be quite satisfactory. Nevertheless, some caution is required in the implementation of this
type of controller. Indeed, the settling time of the output voltage is in the range of about 10
fundamental frequency periods. It is generally quite difficult to improve this significantly. This
implies that, if more frequent load variations can be expected for the considered application,
the controller effectiveness is likely to vanish, as it would be operating permanently in transient
conditions.

5.4.2 The DFT Filter Based Voltage Controller
A different interpretation of the repetitive control concept, which tends to improve some of
its drawbacks while retaining the main positive features, is represented by what we call the
DFT filter based selective harmonic compensation strategy [14]. We are again referring to a
narrow bandwidth controller, whose dynamic response extends itself over several fundamental
frequency periods. As the repetitive-based controller, the DFT filter based controller is also
conceived to operate in parallel with a conventional voltage regulator and to boost the loop gain
only at certain predefined frequencies of interest, which are normally some selected harmonics of
the fundamental frequency. This concept is also closely related to that of the rotating reference
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FIGURE 5.14: Repetitive-based controller operation. (a) output voltage transient; (b) output current
transient; (c) details of (a) before the repetitive controller is activated; (d) details of (b) before the repetitive
controller is activated; (e) details of (a) after the steady state is reached with the repetitive controller;
(f ) details of (b) after the steady state is reached with the repetitive controller.
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troller is parallel connected to the DFT filter based controller.

controllers considered in Chapter 4. Actually, the DFT filter based controller can be considered
an effective way to implement the same control strategy on multiple frequencies.

We have seen how the repetitive-based controller requires that the designer implement
some filtering in the delay line to control the system phase in the vicinity of the crossover
frequency. The choice of the filter and the control of its interaction with the delay line are the
most difficult aspects of the repetitive controller design one has to tackle. The DFT filter based
approach tends to mitigate this problem.

The proposed controller organization can be seen in Fig. 5.15, where two parallel compo-
nents the controller can be identified. The first is a rotating reference frame PI controller, which,
as explained in Chapter 4, is fully equivalent to the structure of Fig. 5.15 where a resonant filter
centred on the output voltage fundamental frequency is substituted to the integral part of the
original PI controller. Please note that this equivalence holds even if the original system is single
phase, since the rotating reference frame can be as well used to represent single-phase quantities
[14]. From the implementation standpoint however, once the equivalence is exploited and the
block diagram of Fig. 5.15 is derived, this interpretation of the rotating reference frame is no
longer relevant. The rotating PI controller will guarantee zero steady-state tracking error on
the fundamental component of the output voltage.

The second component of the considered voltage controller is designed to take care of
high-order harmonics. As in the repetitive-based case, its function is to boost the system open
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loop gain at certain predefined frequencies. To achieve this result, once again a positive feedback
arrangement is considered. Of course, at any frequency where the gain of the FDFT(z) filter is
unity and its phase is zero, the positive feedback will boost the controller gain to infinity. The
nice thing about this controller is that by properly choosing the FDFT(z) filter, it is possible to
have gain amplification only where it is actually needed, i.e., at predefined, selected harmonic
frequencies, not at each harmonic frequency, as it happened for the repetitive-based solution.
Please note that this allows us to save the smoothing filter F1(z), whose design is typically quite
complicated, and which was absolutely necessary for the repetitive-based controller.

To achieve the above-mentioned selective compensation and to get an adjustable phase
lead, which may be required to ensure a suitable phase margin at the crossover frequency, we
propose the use of “moving” or “running” DFT filters, with a window length equal to one
fundamental period, such as

FDFT(z) = 2
M

M−1∑
i=0

(∑
h∈Nh

cos
[

2π

M
h(i + Na )

])
z−i , (5.20)

where Nh is the set of selected harmonic frequencies, and Na is the number of leading steps
required to get the phase lead that ensures system stability. Equation (5.20) can be seen as a
finite impulse response (FIR) pass-band filter with M taps presenting unity gain at all selected
harmonics h . It is also called discrete cosine transform (DCT) filter. One advantage of (5.20)
is that the compensation of more harmonics does not increase the computational complexity,
and the phase lead can be tuned at the design stage by parameter Na . Of course, in order to
implement the repetitive concept, a delay line with Na taps is needed in the feedback path
to recover zero phase shift of the loop gain (FDFT(z)z−Na ) at the desired frequencies, which
is a necessary condition to have gain amplification. Another advantage of (5.20) is that its
structure is highly adapted to the typical DSP architecture, where the execution of multiply
and accumulate instructions normally requires a single clock cycle. This makes the DFT-based
controller extremely effective, particularly if compared to the implementation of a bank resonant
filter.

Considering now our example case, we would like to briefly outline the design procedure
for the DFT filter based voltage controller. The rotating reference frame PI design is straight-
forward: a conventional digital PI is designed for the UPS (Section 5.3.1, Aside 9) and then
turned into the rotating equivalent of Fig. 5.15. This requires simply the doubling of the integral
gain for the resonant filter part of the regulator, while the proportional gain is exactly the same.

The design of the DCT filter is quite easy as well: since we do not need to recover the
system phase, thanks to the relatively high ratio of sampling frequency and required crossover
frequency, parameter Na can be simply set to zero. The number of filter taps is then given
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FIGURE 5.16: Open loop system gain for the DFT-based controller.

by the ratio of the sampling frequency and the fundamental output voltage frequency that,
in order to avoid leakage effects on the DFT filter, must be an integer number. Because of
this constraint, as we did before, we slightly changed the sampling frequency to 48 kHz so as
to get M = 800. The Bode plot of the obtained open loop gain is shown in Fig. 5.16. It is
interesting to compare this figure to Fig. 5.13. As can be seen, gain amplification takes places
only at the predefined frequencies, determining little effects on the system phase margin. The
stability of the closed loop system is consequently determined by the PI controller’s design, as
in a conventional implementation. In order to limit the computational effort and the memory
occupation, a sample decimation by a factor Mc can be used in the FIR filter implementation,
similarly to what we have done for the repetitive control. More precisely, in our example, M has
been reduced by a factor of 10 (Mc = 10, M = 80) or even by a factor of 20 (Mc = 20, M = 40)
without significantly affecting the dynamic performance. Similarly to the repetitive control, the
main issue related to the use of decimation is that the output of the DCT filter is updated only
every Mc samples and it is seen by the proportional controller as a stepwise function. In order
to emulate an interpolator, a moving average filter with Mc taps has been adopted.

As far as the design of the gain KF is concerned, we can follow the same guidelines that
we have illustrated in Chapter 4, Aside 7, when we described the design of a rotating reference
current controller. This may seem surprising, at first, but we must recall that the DFT filter
is nothing but a bank of parallel resonant filters, each tuned on one of the harmonics to be
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compensated. In Chapter 4, we have exactly shown that a rotating reference controller is also
equivalent to a tuned resonant filter, therefore the same criteria can be adopted for the design
of the controller gain in both cases [14]. In the end, the effect of this gain is to determine the
settling time of the DFT-based controller to any disturbance. In the considered example, it was
set to a value corresponding to a settling time equal to 10 fundamental periods.

To complete the design, we still need to specify the set of harmonics we want to com-
pensate. In our example case, this was set to {3, 5, 7, 9, 11}.

The controller operation is illustrated by Fig. 5.17, which considers the UPS system
behavior in the same conditions of Fig. 5.14. Once again, the controller initially operates only
in PI mode. This implies a significant output voltage distortion, which can be observed in
Fig. 5.17(c). After 0.1s, the DFT filter based section of the controller is activated, determining
the progressive attenuation of the voltage tracking error. As in the previous case, the interaction
between the UPS output impedance and the diode rectifier determines an increase in the load
current crest factor, as can be seen comparing Figs .5.17(d) and 5.17(f ). An important difference
with the previous example is represented by the internal current controller: in this case a purely
proportional current regulator was employed. This is the reason why the current tracking error,
visible in the left column of Fig. 5.17, is somewhat higher than that we can observe in Fig. 5.14.
Nevertheless, considering the right column of Fig. 5.17 we can appreciate the very satisfactory
performance of the DFT-based controller. This allows us to conclude that as far as a narrow
bandwidth voltage controller’s effectiveness is concerned, the presence of a high-performance
internal current controller is not essential. Indeed, in the steady state the quality of the harmonic
compensation can be very high. Of course, in dynamic conditions, i.e., in the presence of load
step changes or other fast transients, the system’s speed of response and its damping, which
are also functions of the current loop bandwidth, could be unacceptable. However, in the case
where a limited bandwidth current controller has to be accepted, the phase lead effect of the
DFT controller can be exploited to increase the system’s phase margin and push the bandwidth
very close to the limit.

5.5 OTHER APPLICATIONS OF THE CURRENT CONTROLLED VSI
We would like to conclude the discussion of external control loops for current controlled voltage
source inverters by briefly describing a couple of other important applications where the mul-
tiloop organization is often employed. These are the controlled rectifier and the active power
filter.

They are fundamentally similar, with the hardware organization being exactly the same.
In both applications the VSI is connected to a primary source of energy, which can be simply
the utility grid or any other, more complex, power system. In both of them, the VSI has to
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FIGURE 5.17: DFT filter based controller operation. (a) output voltage transient; (b) output current
transient; (c) details of (a) before the repetitive controller is activated; (d) details of (b) before the repetitive
controller is activated; (e) details of (a) after the steady state is reached with the DFT-based controller;
(f ) details of (b) after the steady state is reached with the DFT-based controller.
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FIGURE 5.18: Typical organization of a controlled rectifier or active power filter.

impose a predefined, controlled current onto the source. The main difference between the two is
represented by the fact that the controlled rectifier directly supplies power to a dc load, while the
active power filter not necessarily does, being typically employed only to compensate undesired
harmonic current components and/or reactive power injected into the source by other distorting
and/or reactive loads. Because of this, the design criteria adopted for the power converter can be
different in the two cases. In order to visualize the typical organization of both these applications
we can refer to Fig. 5.18.

As can be seen, the VSI, which can be single or three phase, is normally connected
to the ac power source through an input filter. This is used to attenuate the high-frequency
components of the converter output current injected into the source. Apart from that, we can
immediately recognize the same basic structure considered in our discussion of current control
implementations. We can therefore conclude that, with the exception of minor modifications
that may be required to take the input filters into account, current controllers for PWM rectifiers
and active filters can be based exactly on the same concepts considered in the previous chapters.
Although it is possible, at least from the general organization point of view, to treat the two
applications in a unified manner, the different goals of the rectifier and the active filter sometimes
call for different control strategies. Therefore, we will now analyze them separately.

5.5.1 The Controlled Rectifier
The PWM controlled rectifier can be represented by Fig. 5.18 once the ILOAD generator is not
considered and an equivalent dc load, represented for simplicity by resistor RDC, is connected
to the converter output. The typical control objective for this converter is to supply the load
with controlled dc power, absorbing high-quality (i.e., harmonic and reactive component free)
ac power from the source. This requires two different control loops: (i) a current control loop,
which is used to impose an ac current IAC on the source, proportional to the input voltage EAC
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and (ii) a dc voltage control loop, which is used to regulate the load voltage, VDC, keeping it to
a predefined value, even in the presence of load and/or line voltage variations.

The current control loop does not need to be particularly fast: indeed the typical reference
waveform, proportional to the ac source voltage, is represented by a practically sinusoidal signal.
Even if the source were affected by a significant harmonic distortion, a current loop bandwidth
in the order of 10 to 20 times the source fundamental frequency would allow us to track the
reference without appreciable errors. These are the typical grounds for the application of PI
current controllers.

In the case of a three-phase power system, the modulator and current controller can take
advantage of the techniques discussed in Chapter 4. These become particularly useful in the case
where we consider a medium power rectifier, rated for several tens of kVA. In that case, it is likely
that the sampling and switching frequency is kept relatively low, making it difficult to guarantee
a good reference tracking even at the fundamental frequency. Rotating reference controllers,
possibly implemented as banks of resonant filters, are in this case particularly effective.

As far as the outer control loop is concerned, its goal is to adjust the current reference
amplitude so as to keep the load voltage on the desired set-point. In single-phase systems, the
instantaneous power unbalance determines a dc voltage ripple across the dc link capacitor [1,
2], which has to be filtered by the voltage regulator in order not to determine input current
distortion. This implies the need for a limitation of the regulation loop bandwidth to a fraction,
typically about one tenth of the fundamental input frequency. Because of this, the design of
the output voltage regulator is normally quite easy, due to dynamic specifications not being so
stringent. Once again, this is a typical situation where a PI controller is probably the best choice.
In three-phase systems, the input power is constant and there is no instantaneous unbalance.
Nevertheless, the voltage loop bandwidth is again typically relatively low.

To design the PI regulator, a suitable dc link voltage dynamic model has to be derived.
In order to sketch a design procedure, that is referred to in the single-phase case, we must first
realize that the voltage controller actually determines the amount of power absorbed by the
rectifier from the ac source. In the steady state, this has to be equal to the sum of the load power
and the converter losses. Instead, in dynamic conditions, the dc link capacitor can absorb or
deliver the instantaneous power unbalance. Therefore, the fundamental equation that describes
the power balance of the system is as follows:

d
dt

ECDC = PAC − Ploss − PLOAD. (5.21)

In (5.21), ECDC = 1
2 CDCV 2

DC is the energy stored in the dc link capacitor, Ploss is the

power the converter dissipates, PLOAD = V 2
DC

RDC
is the power delivered to the load, and PAC, the
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input active power under the hypothesis of unity power factor rectifier operation, is given by

PAC = GEQ · E2
AC RMS, (5.22)

where GEQ represents the voltage controller output. This, as stated above, represents the desired
amplitude of the source current, whose waveform is assumed to be proportional to that of the
source input voltage EAC. Rewriting (5.21) in terms of the system parameters we find the
following dynamic equation,

1
2

CDC
d
dt

V 2
DC = GEQ E2

AC RMS − Ploss − V 2
DC

RDC
, (5.23)

which relates the controlled variable, VDC, to the controller’s output GEQ. As can be seen,
(5.23) is a nonlinear differential equation; therefore, before a dynamic model can be derived a
linearization procedure has to be applied. Of course, since the linearization is based on variable
perturbation and small signal approximation, the model will be only valid in the vicinity of
a steady-state operating point. However, it is interesting to note that if V 2

DC is chosen as the
controlled variable, (5.23) becomes linear and can be directly used for the derivation of the
system dynamic model, which, in this case, will also be valid for large signals. In other words,
controlling V 2

DC instead of VDC, which is functionally equivalent, can greatly extend the linearity
of the control loop.

In practice, since the dc link voltage VDC is almost constant, affected only by a relatively
small low-frequency ripple, the difference in the achievable performance between the two
possible approaches is very small.

Linearization of (5.22) is done assuming that EAC RMS and Ploss are constant and con-
sidering, as usual, each variable quantity to be equal to the superposition of a steady-state
component and a perturbation component, i.e., VDC = V DC + vdc, GEQ = GEQ + geq with
obvious meaning of the symbols. Simple calculations yield the following result,

νdc

geq
(s ) = RDC E2

AC RMS

2V DC

1

1 + s CDC
RDC

2

, (5.24)

which can be used in the design of the dc link voltage regulator. The design of the regulator
can follow the same steps as in Chapters 2 and 3, with continuous time synthesis and successive
discretization. The only caution we need to take is to limit the required bandwidth and keep it
lower than the source fundamental frequency, so as to avoid source current distortion.

5.5.2 The Active Power Filter
The active power filter application can be represented by Fig. 5.18 as well. In this case, the
ILOAD generator is considered and used to represent the distorting or reactive loads the filter
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has to compensate, while the dc load, RDC, may not be present. If there is no dc load, the active
power filter is not required to process any active power, with the exception of that due to its
losses, and can thus be sized to sustain only the reactive and harmonic load currents. A typical
control objective for this application is to compensate the harmonic and reactive load currents,
so as to make the ac source current proportional to the source voltage. This implies that, from
the source standpoint, the load will be seen as an equivalent resistor, absorbing only the active
power required by the distorting loads. The achievement of this objective requires again two
different control loops: (i) a current control loop, used to impose the desired ac current IAC to
the source, and (ii) a dc voltage control loop, used to regulate the load voltage, VDC, keeping it
equal to a given reference value.

Apparently, this situation seems identical to that of the rectifier discussed in the previous
section. This is actually the case for the voltage loop, which can be designed exactly as that
of the rectifier. It is not at all the case for the current loop: the compensation of high-order
harmonic currents normally requires some high-performance current control loop. Indeed, the
implementation of a simple PI current controller is normally able to offer only a limited harmonic
compensation capability, which is very often quite far from being satisfactory.

Therefore, more complex solutions have to be taken into account. As we have illustrated for
the UPS voltage loop, in this case it is as well possible to follow two different design philosophies:
(i) implementing a large bandwidth current controller or (ii) implementing a narrow bandwidth
current controller. The former solution is aimed at the instantaneous compensation of any
deviation of the current injected into the line from its reference waveform. The latter is instead
aimed at the slow compensation of the same deviation, typically requiring several fundamental
frequency periods to be accomplished.

The large bandwidth controllers that, in the digital domain, are exactly of the predictive
type we have discussed in Chapter 3 are normally suited to all those situations where the
distorting and harmonic load currents are characterized by unpredictable and frequent variations.

The narrow bandwidth controllers can be based on the resonant filters or, equivalently, on
the rotating reference frame regulators seen in Chapter 4. In the active filter application, several
parallel regulators will be implemented to take care of the different harmonic frequencies to be
compensated. Repetitive or DFT filter based controllers, of the type seen in Section 5.4, are
also viable solutions. Of course, since the dynamic response of these regulators normally extends
to some fundamental frequency periods, their adoption should be limited to those cases where
the distorting and reactive load currents are not subject to frequent variations and therefore the
controller steady state is not too frequently perturbed. The design of the narrow bandwidth
regulators exactly follows the principles we have illustrated for the UPS voltage control case.

The last issue we need to examine to complete this brief description of active power filter
control is related to the generation of the inverter reference current signal. From Fig. 5.18 we
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can see that in order to achieve the desired compensation and inject a voltage proportional
current into the ac source, the inverter simply needs to generate a current equal to the algebraic
sum of the desired source current and the load current. Therefore, in the most simple approach
the inverter current reference can be built as

IOREF = −I∗
AC + ILOAD = −GEQ EAC + ILOAD, (5.25)

where GEQ, as in the rectifier case, represents the output of the dc link voltage regulator. Of
course, the implementation of (5.25) is straightforward only if the measurement of the distorting
and harmonic loads’ current ILOAD is possible. If this is the case, the result of its application will
be the cancelation of the reactive current component from the ac source current. In addition,
any harmonic current not present in the ac source voltage will also be canceled. The quality of
the cancelation is, of course, limited only by the chosen current controller reference tracking
capabilities [15].

If current ILOAD cannot be measured, or if the active power filter is designed for more
complex tasks, like the partial, controlled compensation of some selected harmonics and/or the
compensation of the load reactive power only, different approaches for the computation of the
converter current reference can be employed, the illustration of which, however, goes beyond
the scope of this book.
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C H A P T E R 6

Conclusions

This book has been conceived to give to the reader a basic and introductory knowledge of some
typical power converter control problems and of their digital solutions. Although the presented
material has been focused on a single converter topology, i.e., the half-bridge voltage source
inverter, the control topics we have been dealing with represent, in our opinion, a significant
spectrum of the more frequently encountered digital control applications in power electronics.

Moving from the pulse width modulation modeling, we have described the fundamental
types of digital current control loop implementation, i.e., the PI controller and the predictive
controller. These basic techniques have subsequently allowed us to present the fundamental
issues related to three phase current control, with particular consideration for the concepts of
rotating reference frame and the controllers that can be based on it.

In the last part of our discussion, we have approached some more advanced control orga-
nizations, essentially based on multiloop strategies. We have consequently presented the typical
case of the voltage controller for a single-phase uninterruptible power supply. We have seen how
both large bandwidth and narrow bandwidth control strategies can be digitally implemented,
and analyzed their merits and limitations. In addition, we have seen how the controllers we
have analyzed can allow the implementation of other applications of voltage source inverters,
like the controlled rectifier of the active power filter.

Of course, we are aware that a lot of other extremely interesting applications could have
been dealt with, and also that the more advanced research topics could have been taken into
account and presented. We hope the choice we have made, for the sake of conciseness, and the
method we have chosen to present the selected material, starting from the very basic issues,
will be good enough to give to the readers that we have not been able to completely satisfy the
motivation for further autonomous study.

On the other hand, we hope that what has been presented will allow inexperienced readers
to successfully experiment with digital control techniques in power electronics.
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